Исследователи из ВШЭ разработали Python-библиотеку для анализа данных движений глаз

© iStock

Исследовательская группа из Высшей школы экономики разработала Python-библиотеку EyeFeatures, предназначенную для анализа и моделирования данных движений глаз. Инструмент призван облегчить работу ученых и разработчиков, предоставляя им возможность эффективно обрабатывать сложные данные и строить предсказательные модели.

Проект реализован в рамках стратегического проекта «ИИ-технологии для человека» («Приоритет-2030»).

Современные исследования активно используют машинное обучение и искусственный интеллект для анализа больших объемов данных движений глаз. Однако, несмотря на значительный прогресс в этой области, имеются проблемы, ограничивающие эффективность таких методов. Одна из них — недостаточная гибкость существующих программных решений. Они часто предлагают ограниченный набор настроек параметров, что затрудняет адаптацию к специфическим задачам исследования. Кроме того, слабым местом остается интеграция этих инструментов с другими специализированными программами. 

Python-библиотека EyeFeatures, разработанная в Лаборатории социальной и когнитивной информатики ВШЭ в Санкт-Петербурге, решает эти проблемы и предлагает удобный набор инструментов для работы с данными движений глаз. Она включает модули для обработки и анализа данных, полученных с помощью айтрекеров — устройств, фиксирующих движение глаз при выполнении различных задач.

Обработка данных о движении глаз — сложный процесс, который состоит из нескольких этапов. Поскольку зрачки глаз движутся не плавно, а скачкообразно, последовательно фокусируясь в определенных точках, первый этап обработки данных заключается в нахождении областей фиксации. На втором этапе производится расчет таких показателей, как средняя длительность фиксации взгляда и среднее расстояние между точками, которые позволяют создавать первые простые предсказательные или диагностические модели. 

Все этапы обработки данных можно осуществлять с помощью различных модулей библиотеки EyeFeatures. Гибкий, модульный подход позволяет легко интегрировать обработку данных движений глаз в существующие исследовательские и коммерческие проекты, начиная с сырых данных и заканчивая готовой предиктивной или объяснительной моделью. Например, применение библиотеки в маркетинговых исследованиях позволит оценивать реакцию потребителей на рекламу. Анализ движения глаз покажет, какие именно элементы привлекают наибольшее внимание аудитории. 

Антон Сурков

Антон Сурков, руководитель проекта, младший научный сотрудник Лаборатории социальной и когнитивной информатики НИУ ВШЭ в Санкт-Петербурге, рассказывает: «Библиотека может быть полезна исследователям, так как позволяет не просто повторять то, что и так было доступно в другом софте, а применять новые алгоритмы и создавать более мощные модели для исследований в таких направлениях, как маркетинг, диагностика когнитивных процессов, разработка пользовательских интерфейсов и нейроинтерфейсов (когда само управление и взаимодействие с программой происходит посредством движения глаз), комбинировать компоненты таким образом, чтобы получать новые результаты и совершенствовать методологию».

Разработка упрощает процесс анализа данных и ускоряет создание предсказательных моделей, что особенно полезно в медицинской диагностике, маркетинге и при изучении когнитивных процессов. Библиотека уже нашла применение в исследованиях стратегического проекта «ИИ-технологии для человека» и была представлена на международной конференции ECEM 2024 в Ирландии.

На площадке международной конференции AI Journey состоялась сессия под руководством вице-премьера Дмитрия Чернышенко, посвященная достижениям российских исследовательских центров в области искусственного интеллекта. Руководитель Центра ИИ ВШЭ Алексей Масютин представил ключевые разработки исследователей центра.

В начале ноября в Уфе состоялось обучение по программе повышения квалификации «Искусственный интеллект и его применение в научных исследованиях» для преподавателей и ученых Республики Башкортостан. Организаторами программы выступили Центр непрерывного образования ФКН НИУ ВШЭ и Евразийский научно-образовательный центр. Обучение было реализовано в сетевой форме по трем направлениям: гуманитарному, естественно-научному и техническому.

Искусственный интеллект стремительно ворвался в образовательное пространство и стал помощником и напарником студентов и преподавателей. Сегодня владение ИИ-инструментами становится универсальной компетенцией и требует от педагогов освоения новых навыков и подходов как к учебному процессу, так и к оцениванию успехов студентов.

В рамках международной конференции по искусственному интеллекту и машинному обучению AI Journey наградили победителей Национальной премии «Лидеры ИИ — 2024». Лауреатами стали Сергей Самсонов, научный сотрудник Международной лаборатории стохастических алгоритмов и анализа многомерных данных Института искусственного интеллекта и цифровых наук ФКН ВШЭ, и Елена Тутубалина из Института искусственного интеллекта AIRI и Научно-учебной лаборатории моделей и методов вычислительной прагматики ФКН ВШЭ. Еще один ученый Вышки стал финалистом премии.

Искусственный интеллект постепенно становится незаменимой частью высшего образования. Его используют и студенты, и преподаватели для снижения объема рутинных задач и расширения своих возможностей. Ограничения и перспективы ИИ рассматриваются в докладе «Начало конца или новой эпохи? Эффекты генеративного искусственного интеллекта (ГИИ) в высшем образовании», который вышел в журнале «Современная аналитика образования» под научной редакцией научного руководителя НИУ ВШЭ Ярослава Кузьминова.

В середине ноября в Вышке состоялся митап, на котором преподаватели, исследователи и административные работники университета представили собственные проекты и поделились опытом использования ИИ-технологий в образовательной и научной деятельности. Встреча прошла в рамках программы повышения квалификации «Искусственный интеллект в образовании и исследованиях».

Искусственный интеллект и виртуальная реальность все чаще становятся частью образования. Больше половины преподавателей-новаторов готовы поддерживать мультимодальные подходы с использованием ИИ, а каждый третий студент считает, что технологии способны сделать учебу интереснее и удобнее. Такие данные представили Лаборатория инноваций в образовании ВШЭ и холдинг Ultimate Education.

В начале ноября в Калининграде прошел международный этап хакатона «Цифровой прорыв. Сезон: Искусственный интеллект». В нем приняли участие 203 команды в составе 1569 человек, и среди них — студенты факультета компьютерных наук ВШЭ, призеры всероссийского этапа. Они соревновались в решении задач от партнеров хакатона — РЖД, Media Wise, «Атома», «Росатома», «Силы» и других организаций.

Искусственный интеллект может значительно облегчить жизнь студентов и преподавателей университетов. Например, он способен автоматизировать некоторые учебные процессы, а также составить прогноз возможностей трудоустройства выпускников.

Группа исследователей из Центра искусственного интеллекта НИУ ВШЭ разработала индекс для определения уровня этичности систем искусственного интеллекта (ИИ) в медицине. Инструмент предназначен для минимизации потенциальных рисков, обеспечения безопасной разработки и внедрения ИИ-технологий в медицинскую практику.

Данные о правообладателе фото и видеоматериалов взяты с сайта «ВШЭ», подробнее в Правилах сервиса
Анализ
×
Дмитрий Николаевич Чернышенко
Последняя должность: Заместитель Председателя (Правительство Российской Федерации)
198
Ярослав Иванович Кузьминов
Последняя должность: Научный руководитель (ВЫСШАЯ ШКОЛА ЭКОНОМИКИ)
1
Сурков Антон
Масютин Алексей
Самсонов Сергей
ОАО "РЖД"
Сфера деятельности:Оптовая торговля
493
Госкорпорация "Росатом"
Сфера деятельности:Производство и распределение электроэнергии, газа и воды
373
ВЫСШАЯ ШКОЛА ЭКОНОМИКИ
Сфера деятельности:Образование и наука
297