Технология южнокорейских инженеров обещает революцию в медицине и других областях.
Роботы высотой всего 600 микрометров (примерно толщина шести листов бумаги) сделаны из эпоксидного материала с частицами магнитного металла (неодим-железо-бор). Управляются они с помощью внешнего вращающегося магнитного поля, которое позволяет им объединяться в группы и изменять форму для выполнения различных задач. Результаты работы опубликованны в журнале Device Cell Press.
В ходе различных экспериментов роботы продемонстрировали много возможностей:
- Стаи роботов способны подниматься на объекты, в пять раз превышающие их длину, или перепрыгивать через них, действуя сообща.
- Группы из роботов могут транспортировать грузы, в сотни раз превышающие вес каждого робота. Например, в воде рой обернул таблетку, вес которой превышал вес одного робота в 2000 раз.
- Имитация медицинских процедур: роботы прочищали трубки, напоминающие закупоренные сосуды, что может быть полезно в малоинвазивной хирургии.
- Управление микроорганизмами: с помощью вращательных движений роботы способны управлять поведением крошечных организмов, направлять их в нужное место или даже переносить.
- Использование в инженерии и космосе: роботы донесли питательный элемент до нужной точки, позволяющий замкнуть контакт и включить лампочку. Это может быть крайне удобно в труднодоступных или экстремальных условиях.
Кубическая форма роботов помогает им прочно соединяться друг с другом, так как их магнитные силы работают через целые стороны куба. Благодаря этому роботу легко собираются в разные формы для выполнения задач. Ученые придумали простой и недорогой способ изготовления таких устройств, чтобы они все были одинаковой формы и обладали одинаковыми магнитными свойствами.
Стаи роботов созданы по аналогии с муравьями, которые совместно преодолевают препятствия или образуют живые плоты. Такая организация делает рои из роботов устойчивыми к сбоям: даже если часть роботов выйдет из строя, остальные продолжают выполнять задачу.
Хотя достигнутые результаты впечатляют, роботы пока зависят от внешнего управления магнитным полем. Чтобы использовать их в реальных условиях, например, в артериях, требуется повысить их автономность. Ученые планируют разработать системы с обратной связью в реальном времени для точного контроля над движениями роботов.