Российские ученые показали, как беспорядок помогает получению необычной сверхпроводимости

© iStock

Исследователи из НИУ ВШЭ и МФТИ изучили, как состав электронов в сверхпроводнике влияет на появление интертипной сверхпроводимости — особого состояния, при котором сверхпроводники проявляют необычные свойства. Ранее считалось, что она возникает только в материалах с минимальным количеством примесей. Однако ученые выяснили, что область интертипной сверхпроводимости сохраняется и даже может быть расширена в материалах с большим количеством примесей и дефектов. В будущем такие сверхпроводники могут помочь в разработке высокочувствительных сенсоров и детекторов. Исследование опубликовано в журнале Frontiers of Physics.

В обычных материалах присутствует хотя бы небольшое сопротивление — свойство, которое препятствует прохождению электрического тока и приводит к потере энергии. Однако некоторые материалы при охлаждении до очень низких температур переходят в состояние, при котором сопротивление утрачивается. Такое состояние называют сверхпроводимостью, а материалы — сверхпроводниками. 

Когда материал переходит в сверхпроводящее состояние, он полностью вытесняет внешнее магнитное поле, например, от электромагнитов или проводников с током. Однако если внешнее поле становится слишком сильным, сверхпроводник теряет свои свойства и возвращается в обычное состояние. 

Сверхпроводники принято делить на два типа. Отнесение к тому или иному типу зависит от поведения в магнитном поле и значения параметра Гинзбурга — Ландау. Параметр зависит от характеристик материала, наличия примесей и дефектов. Если он меньше определенного значения, то материал относится к сверхпроводникам первого типа, если больше — второго. У первого типа магнитное поле вытесняется из объема, пока напряженность не достигнет критического значения. После этого поле проникает в материал и сверхпроводимость утрачивается. В сверхпроводниках второго типа ситуация иная: магнитное поле начинает проникать, когда напряженность достигает минимального порога, однако сверхпроводимость при этом сохраняется. Поле проникает в виде вихрей — тонких трубок с током, внутри которых находится магнитное поле. Эти вихри образуют упорядоченную структуру в виде решетки.

Однако существует узкая область вокруг критического значения параметра Гинзбурга — Ландау, в которой сверхпроводимость приобретает промежуточные свойства между первым и вторым типами. Это состояние называют интертипной сверхпроводимостью. В нем возникают необычные конфигурации магнитного поля, отличные от решеток: кластеры вихрей, цепочки и гигантские вихри, приводящие к новым магнитным свойствам, отличным от классических. 

Изначально интертипная сверхпроводимость наблюдалась только в чистых сверхпроводниках с минимальным количеством примесей. Однако новое исследование ученых Центра квантовых метаматериалов МИЭМ НИУ ВШЭ и Центра перспективных методов мезофизики и нанотехнологий МФТИ показало, что в сверхпроводниках с большим количеством примесей и дефектов область интертипной сверхпроводимости сохраняется. Это возможно в многозонных сверхпроводниках, где присутствуют несколько «сортов» электронов, различающихся по свойствам. Электроны, принадлежащие разным энергетическим зонам, по-разному реагируют на примеси: одни чувствуют их сильнее, другие слабее. При этом степень взаимодействия с примесями можно контролировать, например облучая материал ионами, что позволяет расширить область интертипной сверхпроводимости. 

Результаты, полученные учеными, позволяют больше узнать о типах сверхпроводимости и изменении ее свойств в зависимости от условий. Это важно для грамотного использования сверхпроводников в кабелях и мощных магнитах, поскольку токовые и магнитные свойства сверхпроводника зависят от его типа. Также это полезно для разработки новых высокочувствительных устройств.

Павел Марычев

«Исследование расширяет представления о сверхпроводимости и классической классификации сверхпроводников, существующей уже около 70 лет. Мы показали, что сочетание беспорядка и многозонных эффектов кардинально изменяет свойства сверхпроводников и открывает возможность изучать редкие и экзотические сверхпроводящие состояния. А благодаря тому, что конфигурации магнитного поля при интертипной сверхпроводимости чувствительны к параметрам температуры и тока, в будущем такие сверхпроводники возможно использовать в высокочувствительных сенсорах и детекторах», — комментирует научный сотрудник Центра квантовых метаматериалов МИЭМ НИУ ВШЭ Павел Марычев.

Российские и бразильские физики приступили к совместной разработке новой теории высокотемпературной сверхпроводимости, которая позволит объяснить природу недавно открытых сверхпроводников с множественными конденсатами, а также так называемых топологических сверхпроводников. О том, как будет складываться сотрудничество, HSE Daily рассказали профессор Федерального университета Рио-де-Жанейро Мауро Дориа и директор Центра квантовых метаматериалов МИЭМ НИУ ВШЭ Алексей Вагов.

Данные о правообладателе фото и видеоматериалов взяты с сайта «ВШЭ», подробнее в Правилах сервиса
Анализ
×
Марычев Павел
Вагов Алексей
ВЫСШАЯ ШКОЛА ЭКОНОМИКИ
Сфера деятельности:Образование и наука
310
МФТИ
Сфера деятельности:Образование и наука
97
Федеральный университет Рио-де-Жанейро
Сфера деятельности:Образование и наука
МИЭМ
Компании