Анализ крови — важный этап оценки здоровья пациента, который состоит из подсчёта количества различных кровяных клеток, основные из них — красные эритроциты и белые лейкоциты. Например, снижение содержания эритроцитов в крови наблюдается при анемии, а повышение количества лейкоцитов может говорить об инфекционных заболеваниях и воспалениях. Российские учёные разработали неинвазивный метод определения лейкоцитов в крови с точностью 90%. Исследователи во время капилляроскопии применили ИИ-модель, обученную на синтетических видео с использованием компьютерного зрения. Подробное описание эксперимента опубликовано в сборнике научной конференции ICLR.
Известны медицинские технологии, которые позволяют наблюдать движущиеся кровяные клетки в капиллярах с помощью специального микроскопа, снабжённого цифровой камерой, — капилляроскопия. У учёных появилась идея с помощью нейросетей по медицинским видеозаписям посчитать эти клетки и сопоставить полученные данные с результатами традиционного клинического анализа крови через шприц. Это может помочь разработать новый способ анализа крови без взятия пробы. Преимуществом данного метода станет его оперативность — можно будет узнать состав крови в реальном времени, не тратя время на ожидание результатов исследования в лаборатории. Идея хоть и очевидная, но пока сложно реализуемая. На данном этапе тяжело добиться высокого качества видеоизображений микроциркуляции крови — при оптическом увеличении кадра снижается его качество и количество одновременно наблюдаемых клеток.
Чтобы максимально приблизить синтетические видео к реальным качество изображений снизили — это затруднило детектирование отдельных клеток из-за размытия их границ. Авторы научной работы предложили и реализовали метод по обработке «зашумлённых» видеоданных. Сперва учёные обучили модели искусственного интеллекта «по расписанию». При этом способе обучающие данные ранжируются по качеству и обучение моделей происходит как обучение человека: поэтапно, от простого к сложному, от более качественных данных к менее качественным. Затем исследователи и на стадии обучения моделей, и на стадии тестирования провели аугментацию — взяли случайно выбранные фрагменты изображения, которые позволили модели выдать несколько промежуточных предсказаний для каждого образца и выбрать результат, например, самый часто встречаемый среди промежуточных.
В результате исследований специалисты научились определять более крупные белые кровяные клетки — лейкоциты — с точностью выше 90 %. Предложенный метод c обучением по случайно выбранным фрагментам изображения повысил точность подсчёта кровяных клеток примерно на 10 %. Эксперименты также показали, что обучение моделей по видео происходит быстрее, а предсказания точнее в сравнении с обучением на статичных изображениях. Конечно, новый метод даёт информацию только о высоком или низком содержании эритроцитов и лейкоцитов в крови, однако и в такой формулировке он представляет практический интерес для медицины. Дальнейшие исследования учёные планируют связать со сбором и обработкой реальных видеоизображений капилляроскопии.