Информация о прошлом климате тает вместе со льдом

UNEP

Национальные планы по адаптации к изменению климата: страновой срез UNEP

Климатология в наши дни явно переросла ту описательную науку на стыке географии и физики, какой она была последние несколько столетий. Причиной стремительного роста интереса к климатологии стало наше осознание непреднамеренного влияния на климат Земли, который в последние годы существенно меняется, все дальше отклоняясь от привычных нам состояний.

Сначала ученых заинтересовали сами эти изменения, затем — их причины, связанные с ними последствия и, наконец, возможные меры противодействия. Такие разные задачи требуют и разных инструментов для их решений, и разных навыков и компетенций у ученых. Все это разнообразие сейчас и составляет климатологию.

Ученые-климатологи получают информацию о свойствах и параметрах основных климатических оболочек (атмосфера, гидросфера, биосфера, литосфера и криосфера) и обменных процессах между этими оболочками с помощью хорошо развитой системы наблюдений. И хотя именно как система глобальная система наблюдений за климатом сформировалась только в начале 1990-х годов, ее отдельные компоненты уже насчитывают десятки лет. В целом эра инструментальных наблюдений за климатом длится уже более 170 лет и включает различные наблюдения. Средства наблюдений непрерывно совершенствуются, повышается точность и охват, исследуются все более «тонкие» вещи. Например, потоки парниковых газов из экосистем, накопление тепла в океане, объем льда в ледниках, поглощающие свойства аэрозолей, расположение и интенсивность молниевых вспышек и т. д. 

Если в XIX веке основными наблюдениями были инструментальные судовые наблюдения или наблюдения на метеорологических станциях, то сейчас основной поток информации идет от автоматических средств наблюдений. Это и контактные наблюдения, например автоматические метеостанции, буи, глайдеры, датчики, которые ставятся на самолеты и коптеры и так далее, так и средства дистанционного зондирования — спектрорадиометры, радары, лидары, содары. Располагаются такие приборы как на Земле, так и в космосе, на спутниковых аппаратах. Например, по измерению аномалий гравитационного поля Земли ученые изучили сокращение объема льда в Гренландском и Антарктическом ледовых щитах. А по тем или иным изменениям приходящего солнечного излучения в узких спектральных каналах климатологи фиксируют свойства аэрозолей, мельчайших твердых и жидких взвешенных в воздухе частиц, существенным образом влияющих на физику облаков, качество воздуха и климат планеты. Большую роль внесли длительные программы наблюдения за океаном и атмосферой, например программы ПИГАП (Программа исследования глобальных атмосферных процессов), «Разрезы» и другие.

Именно благодаря наблюдениям мы знаем о том, что в последние десятилетия очень быстро растет концентрация парниковых газов в атмосфере (в первую очередь углекислого газа, но также метана, закиси азота). Наблюдения за изменением изотопного состава СО2 в атмосфере позволили уверенно атрибутировать причину этого роста — сжигание ископаемого топлива, в котором практически нет неустойчивого изотопа 14С. Об этом же говорят и наблюдения за потоками парниковых газов. (подробнее см.ниже главу «Нужно кое-что объяснить»)Рост концентрации парниковых газов в свою очередь ведет к усилению парникового эффекта: это усиление хорошо фиксируют мультиспектральные наблюдения за встречным длинноволновым излучением атмосферы. Благодаря развитой сети наблюдений ученые видят и результат этого усиления: потепление в нижних слоях атмосферы и на поверхности (например, 2023 год стал теплее второй половины XIX века на 1,45 ºC) и резкое выхолаживание в высоких слоях атмосферы. 

Усиление парникового эффекта из-за антропогенных потоков СО2 постоянно отклоняет планету от радиационного равновесия. Спутниковые системы фиксируют энергетический небаланс Земли: мощность приходящей лучистой энергии от Солнца составляет 340 Вт·м–2, а мощность уходящей в космос радиации — только 339 Вт·м–2. В последние годы развитые системы наблюдений позволили замкнуть этот небаланс, и понять, куда «уходит» этот 1 Вт·м–2: ученые установили, что в первую очередь эта разница идет на нагрев океана (около 90%). 

Также важным достижением последних лет стало определение всех составляющих наблюдаемого роста океана, который ускорился с 2 мм в год в 1990-е годы, почти до 5 мм в год в наши дни. Ученые установили, что сейчас основной вклад в этот рост вносит таяние ледников, и в первую очередь — льда в Гренландии

Тающие льды потихоньку уносят с собой информацию о прошлом климате, исследование которого по-прежнему представляет большой интерес. Здесь ученые используют природные «архивы», содержащие полезный сигнал о прошлом климате: изотопы в кольцах деревьев и в донных отложениях, состав воздуха в пузырьках, вмороженных в лед, и так далее.

Роль океана, в том числе Арктики, в климатических изменениях активно исследуется в Институте океанологии им. П. П. Ширшова РАН, Арктическом и Антарктическом научно-исследовательском институте, Тихоокеанском океанологическом институте им. В. И. Ильичёва ДВО РАН. Гидросфера суши как часть климатической системы исследуется в Институте водных проблем РАН, Государственном гидрологическим институте, а вопросами криосферы и процессов в многолетнемерзлых грунтах занимаются ученые Института криосферы Земли СО РАН, Института мерзлотоведения им. П. И. Мельникова СО РАН

В науке крайне важна возможность поставить и провести эксперимент, чтобы подтвердить или опровергнуть ту или иную гипотезу. Поэтому климатология живет не только наблюдениями и палеореконструкциями. Для уточнения отдельных механизмов работы климатической системы организуются и проводятся наблюдательные кампании. Так, еще в конце XIX века Ф. Нансен выдвинул гипотезу о наличии трансполярного дрейфа в Арктике и проверил ее, вморозив свой корабль Фрам во льдах моря Лаптевых и освободившись ото льда в районе Шпицбергена. 

С климатическими моделями сейчас проводится большое количество экспериментов, в том числе ансамблевых (когда делается не один запуск модели, а десятки и сотни запусков), скоординированных между научными группами (модели сравниваются между собой). Исследуется роль облаков и аэрозолей в климате, роль парниковых газов и естественной изменчивости. В частности, модели показывают, что учет только природных факторов (таких как изменчивость солнечной активности, параметров орбиты, извержения вулканов) не может объяснить современное потепление, а при учете и природных и антропогенных факторов модели воспроизводят потепление достаточно уверенно. Прогнозы климата на основе климатических моделей, сделанные десятки лет назад, успешно оправдываются: модельные расчеты 1970-х годов успешно предсказали рост температуры, более поздние расчеты предсказали и рост океана, и даже ускорение этого роста. Причем оправдались прогнозы, сделанные не только в исследовательских институтах, но и, например, в крупных корпорациях. Ученые по заслугам оценили достижения климатологов, в 2021 году Нобелевская премия по физике была вручена за «физическое моделирование климата Земли, количественный анализ изменчивости и надежное прогнозирование глобального потепления», ее получили С. Манабе и К. Хассельман.

Успешность моделей в прогнозировании изменений за последние десятилетия позволяет предполагать и корректность прогнозов на следующие десятилетия. Такие прогнозы составляются исходя из сценариев изменений солнечной активности, параметров орбиты, антропогенной деятельности. Представители общественных наук создали несколько возможных сценариев развития общества, при которых по-разному будет развиваться численность населения, урбанизация и образование, тип энергетики, транспорта, сельского хозяйства, что в итоге будет приводить к разным эмиссиям аэрозолей и парниковых газов. В итоге разные сценарии будут приводить и к разному отклику климатической системы: при сценарии устойчивого развития температура к концу века вырастет еще на полградуса, уровень океана поднимется на 40 см, а при сценарии активного использования углеводородов температура к 2100 году может подрасти еще на 3 ºC, уровень моря вырастет почти на метр. 

Важной частью климатологии становится наука о механизмах адаптации, приспособлении к новым климатическим условиям. У биологических видов она обычно реактивная: виды реагируют на уже произошедшие изменения и действуют в ответ. У общества и человека есть возможность действовать превентивно, упреждающе: корректно оценив прогнозируемые последствия и риски, ученые подсказывают, что можно сделать уже сейчас, чтобы снизить эффект от отрицательных последствий и усилить — от положительных. Например, климатологи делают прогноз изменения продолжительности навигационного пути на Северном морском пути, прогноз изменения ареалов растениеводства и урожайности, прогноз роста уровня океана и усиления штормовых нагонов, прогноз деградации многолетней мерзлоты и так далее. Имея такие прогнозы на руках, принимающие решения люди лучше понимают необходимость развития портовой инфраструктуры в Арктике, расширения сельскохозяйственных практик, укреплении берегов и так далее. Прогнозы климатологов по тем или иным рискам ложатся в основу планов адаптации регионов и отраслей.

Важным результатом последних лет стали количественные оценки рисков при разном уровне глобального потепления: учеными было показано, что риски тем выше, чем выше ожидаемый уровень потепления. А этот уровень, в свою очередь, напрямую зависит от количества парниковых газов, которое человечество дополнительно выбросит в атмосферу. Поэтому бок о бок с изменениями климата происходит глобальный переход на низкоуглеродный путь развития: с каждым годом растет количество энергии, полученной от возобновляемых источников, вводятся новые практики в химической и металлургической отраслях, меняется транспорт, сельскохозяйственные практики. Много работ в последнее время ведется по усилению поглощения углерода экосистемами суши, по разработке систем прямого улавливания углерода из атмосферы. Низкоуглеродное развитие нацелено на сокращение этих выбросов и избежание опасно высокого уровня потепления. И в этой области в последние годы отмечается настоящий научно-технологический бум, в котором участвуют ученые разных направлений: энергетики, науки о материалах, химии, физики, биологии и т. д. 

Есть и более «приземленные» к климатологии задачи. Например, ученые до сих пор не могут сузить диапазон чувствительности — реакции глобальной температуры на рост концентрации парниковых газов. Так, равновесная чувствительность температуры к удвоению концентрации СО2 в атмосфере оценивается в диапазоне  2–5C°: не сужается этот диапазон ни в модельных расчетах, ни в палеоданных. Причины такого размаха кроются в десятках, а то и сотнях обратных связей, действующих в климатической системе на разных временных масштабах. Особую «головную боль» климатологам приносят обратные связи, обусловленные облаками: ведь облака могут как отеплять планету (за счет парникового эффекта, который каждый из нас может оценить, сравнив между собой температуру воздуха в ясную и пасмурную зимние ночи), так и охлаждать (за счет их альбедного эффекта, который можно ощутить, сравнив температуру в ясный и пасмурный летний день).

В последнее время большое внимание климатологи уделяют критическим точкам в климатической системе, прохождение которых может приводить к масштабным, ускоренным и зачастую необратимым климатическим изменениям. Например, такой точкой может служить прохождение точки стабильности ледника Западной Антарктиды, или прохождение точки перехода лесов Амазонии из поглотителей СО2 в его эмитенты.

МГЭИКСлева: изменение глобальной приповерхностной температуры воздуха за последние 2000 лет, по данным наблюдений и реконструкций, а также оценка наиболее теплого многолетнего периода за последние 100 тысяч лет. Справа: глобальная приповерхностная температура, по данным наблюдений (черная линия) и по данным численных экспериментов с климатическими моделями с учетом только естественных факторов климатической изменчивости (зеленая заливка), а также естетсвенных и антропогенных факторов (коричневая заливка)
МГЭИК

Источник: Naked Science

Данные о правообладателе фото и видеоматериалов взяты с сайта «Атомная энергия 2.0», подробнее в Правилах сервиса