Ученые Сеченовского Университета вместе с командой по искусственному интеллекту и большим данным «Билайна» разработали ИИ-модель для оценки риска отторжения трансплантата почки с помощью компьютерного зрения. Предложенный подход может помочь специалистам быстрее и точнее определять состояние пересаженной почки, снизить вероятность ошибок и повысить шансы сохранить новый орган.
После пересадки врачи регулярно проводят чрескожную биопсию почки, а затем оценивают состояние трансплантата и прогнозируют риски с помощью классификации Banff (Банф), которая основана на полуколичественной оценке признаков, характерных для повреждения ткани трансплантата почки. Она учитывает различные причины и сценарии развития отторжения и позволяет определиться с дальнейшей стратегией терапии. Достойных альтернатив классификации Banff нет, но и она имеет слабые места: оценка патологических изменений делается на глаз, а сама классификация часто пересматривается. Оценка состояния трансплантата влияет на лечение, которое будет получать пациент, поэтому неточность может привести к серьезным последствиям.
Исследователи из лаборатории цифрового микроскопического анализа Сеченовского Университета предложили решить эту проблему с помощью технологий искусственного интеллекта. «Система оценки состояния трансплантатов Banff опирается на качественную балльную оценку, но такой подход вызывает много споров среди профессионалов. Мы разработали инструмент, который даст возможность оценить состояние регионов тканей с патологическими изменениями в процентах. Количественная оценка будет более точной, чем качественная, и поможет принять более объективные решения насчет дальнейшей терапии», — рассказывает заведующий лабораторией цифрового микроскопического анализа Алексей Файзуллин.
Подробнее на cnews.