Российские ученые выяснили, как лучше хранить оксид графена

Ученые из Сколтеха, МФТИ, Института биохимической физики имени Н. М. Эмануэля РАН и других научных организаций провели исследование, чтобы выяснить, в каких условиях лучше всего хранить оксид графена — перспективный материал, который можно использовать при изготовлении композитных материалов, газовых сенсоров и во многих других областях. Результаты показали, что самые оптимальные условия для оксида графена, в которых его свойства не будут меняться, — низкие температуры и отсутствие света.

Работа опубликована в журнале Surfaces and Interfaces. Графен обладает уникальными свойствами и широко используется в электронике, накопителях энергии и оптоэлектронике. Однако получить чистый графен в больших количествах непросто и дорого, поэтому его заменяют производными соединениями — например, оксидом графена (GO). Ему присущи высокое электрическое сопротивление, низкая теплопроводность и высокая растворимость. Широкое применение в промышленности оксид графена пока не получил из-за своей химической неоднородности, нарушений структуры, которые появляются из-за агрессивной химической среды при синтезе оксида, а также естественного износа материала под воздействием окружающей среды.

«Структура оксида графена при его изготовлении химическими методами очень сложно воспроизводима — она будет всегда разной. И спустя время она начинает деградировать, а у самого оксида графена меняются свойства. Если после изготовления отправить материал в другое место: в другой институт, другую страну, он придет совсем в другом состоянии. И даже когда пробирки будут просто стоять в лаборатории, свойства материала тоже будут меняться. Мы решили провести систематическое исследование того, в каких же условиях лучше всего хранить образцы», — рассказал Дмитрий Квашнин, соавтор работы, доктор физико-математических наук, доцент, ведущий научный сотрудник Института биохимической физики имени Н. М. Эмануэля РАН.

Команда ученых изготовила несколько партий оксида графена, идентичного с точки зрения химического состава и метода получения, и затем поместила их в разные условия: хранение при комнатной температуре и в холодильнике, а также под воздействием света и без него.

«На протяжении 150 дней мы наблюдали за изменением свойств приготовленных образцов: мы смотрели, как меняются спектры поглощения, спектры рентгеновского фотоэлектронного излучения, водородный показатель и вязкость суспензий. Анализ совокупности этих характеристик позволил нам расширить наше понимание процессов, протекающих на поверхности оксида графена, приводящих к структурным изменениям. Мы выяснили, что лучше всего оксид графена хранить в холоде и без воздействия света. Тогда не происходит восстановления, то есть удаления кислородсодержащих групп с поверхности оксида графена, и он не превращается обратно в графен. А при комнатной температуре и под воздействием света он восстанавливается быстрее, это видно даже по изменению цвета раствора — он темнеет», — рассказала первый автор работы Юлия Бондарева, научный сотрудник Центра технологий материалов Сколтеха.

«Чтобы понять, какие именно изменения могут происходить в структуре оксида графена и почему с течением времени он выпадает в осадок, мы воспользовались методами суперкомпьютерного атомистического моделирования. С помощью квантово-химических расчетов мы показали, что в наиболее стабильном состоянии кислородные группы на поверхности оксида графена стремятся объединиться в кластеры. Это отличается от основной массы используемых в литературе моделей, которые предполагают равномерное случайное распределение кислорода.

Показанная же нами кластеризация кислородных групп, с одной стороны, должна приводить к изменению оптических спектров, а с другой — к образованию чистых графеновых участков в тех областях, откуда кислород „мигрировал“. Поскольку графен крайне гидрофобный материал, такие участки будут стремиться слипнуться друг с другом, чтобы минимизировать контакт с водой. Это и приведет к выпадению осадка, наблюдаемого в эксперименте. О других совместных исследованиях можно прочитать в объединенном телеграм-канале лабораторий», — пояснил соавтор работы, заместитель заведующего лабораторией компьютерного дизайна материалов МФТИ, кандидат физико-математических наук Никита Орехов.

Результаты работы доказывают, что особое внимание нужно уделять условиям хранения материалов и исследовать их свойства на каждом этапе синтеза, отметили авторы. Работа выполнена при поддержке гранта РНФ.

Источник: Naked Science

Данные о правообладателе фото и видеоматериалов взяты с сайта «Атомная энергия 2.0», подробнее в Правилах сервиса
Анализ
×
Юлия Эдуардовна Бондарева
Последняя должность: Заместитель начальника Главного управления (Банк России)
Квашнин Дмитрий
МФТИ
Сфера деятельности:Образование и наука
186
Сколковский институт науки и технологий
Сфера деятельности:Образование и наука
74
ИБХФ РАН
Организации