© iStock
На платформе «Открытое образование» стартовал онлайн-курс «Что такое генеративный ИИ?», который поможет слушателям узнать больше о том, как правильно общаться с нейросетями, чтобы они лучше выполняли задачи. Как работает генеративный ИИ и как с его помощью создавать любой контент, рассказала эксперт Центра непрерывного образования, старший преподаватель департамента больших данных и информационного поиска ФКН Дарья Касьяненко.
Дарья Касьяненко
— Что такое генеративный искусственный интеллект?
— Генеративные модели (GenAI) — это тип искусственного интеллекта, который создает текст, код, изображения, музыку и другой контент в ответ на подсказки (промпты).
Такие модели обучаются на больших объемах данных, наблюдая и сопоставляя закономерности. Например, если мы покажем модели миллионы картинок светофора, то постепенно она начнет понимать, что светофор — это прямоугольная коробочка с красной, желтой и зеленой лампочками.
В основном генеративный ИИ используется для создания контента. Школьники пишут сочинения, маркетологи составляют планы продвижения — вариантов много. Но вместе с тем наши представления об искусственном интеллекте сильно искажены популярной культурой. Нам кажется, что он в лучшем случае решит все наши проблемы, а в худшем — поработит нас. Ни того ни другого в ближайшее время не случится.
Больше о работе с нейросетями и применении искусственного интеллекта — на портале.
Существующие модели не заменят вас на работе (к сожалению или к счастью), но могут стать личным помощником в рутинных делах: например, написать за вас имейл, вычитать текст, проанализировать табличные данные, обобщить большие тексты или видео.
— Как генерируются тексты? Почему ИИ может, например, выдавать ложные факты?
— Тексты создаются с помощью языковых моделей. Они обучаются на больших объемах текстов, могут улавливать нюансы языка. Система получает задание (промпт), обрабатывает его и возвращает ответ. Эту модель можно представить в виде этакого мудреца, который прочитал все книги в мире и может по памяти воспроизвести ответ на любой вопрос.
Однако у моделей есть так называемые галлюцинации — именно из-за них случаются ошибки. Например, вы попросите модель написать сочинение про великого писателя Нейрона Нейроновича Нейронова. Модель с удовольствием расскажет вам, какой гениальный это писатель, и даже составит список его книг. Так происходит, когда у ИИ не хватает знаний по теме, и он, как студент, который не готовился к экзамену, начинает врать. Такое может происходить и из-за случайных сбоев в системе.
— Как генерируются картинки? Почему иногда у изображений есть артефакты?
— Картинки генерируются из шума (пустого изображения). Постепенно модель улучшает его по подсказке (промпту), пока не получится изображение, похожее на то, что просил сделать пользователь.
Обычно у сгенерированных картинок есть проблемы с отрисовкой людей: лишние руки-ноги, полная симметрия лица (эффект зловещей долины), разные глаза, странные улыбки и так далее. Чем больше деталей в изображении, тем хуже модель будет справляться с задачей.
Самое простое решение — просить модель рисовать человека в таких позах, где не видны руки и ноги, или просить нарисовать портрет.
— Какова роль человека в управлении ИИ, если говорить об обычном пользователе?
— Сейчас нам нужно учиться общаться с сервисами генеративного ИИ. Может показаться, что задавать вопрос в чате и получать ответы достаточно просто. Но чтобы получить действительно качественный ответ, нужно учиться промпт-инжинирингу, то есть искусству правильно составлять вопросы для машины. Существует даже целая профессия — промпт-инженер.
Сейчас можно найти огромное количество учебников по промптам, где научат правильно составлять запросы в форматах суммаризации, позиционных форматах, с описанием контекста, с описанием инструкций. Это целая наука.
На курсе мы как раз рассказываем и о том, как пользоваться промптами, и учимся глубже понимать их работу.
Пока ученые спорят о пользе и вреде искусственного интеллекта, молодежь активно осваивает и интегрирует нейросети в свою жизнь, приспосабливая нашу реальность к новым условиям. О том, как дообучить LLM, чтобы они смогли служить полноценными ассистентами в профессиональной среде, обсудили в Вышке на воркшопе «Большие языковые модели в науке и в жизни».
Согласно итогам экспертизы, программа Высшей школы экономики охватывает современные области анализа данных и машинного обучения и помогает нетехническим специалистам приобрести базовые знания в области больших данных и искусственного интеллекта. Это уже шестая образовательная программа факультета компьютерных наук НИУ ВШЭ, получившая престижную профессионально-общественную аккредитацию.
Дирекция программы развития НИУ ВШЭ объявляет о проведении конкурса компетенций в интересах развития исследований в области искусственного интеллекта и машинного обучения. Заявки принимаются до 2 мая 2024 года.
Правда ли, что мозг — самый неизученный орган? Как нейротехнологии помогают в лечении сложных заболеваний? Может ли искусственный интеллект соревноваться с естественным? И куда пойти учиться, чтобы стать нейроученым? Эти и другие темы в новом выпуске рубрики «Разговор с экспертом» обсудили ученые из Высшей школы экономики — Ольга Драгой, Андрей Мячиков и Алексей Осадчий.
Высшая школа экономики представила новый комплексный проект по повышению квалификации профессорско-преподавательского состава НИУ ВШЭ в области использования искусственного интеллекта. Входящий в него пакет программ направлен на обеспечение высокого уровня компетенций в области использования ИИ в образовании и исследованиях. Курсы бесплатны и предназначены для штатных преподавателей, а в дальнейшем — научных сотрудников и аспирантов московского кампуса НИУ ВШЭ.
Онлайн-кампус НИУ ВШЭ запустил курс «Прикладные нейросети» на портале «Открытое образование». Теперь разобраться в том, как применять возможности искусственного интеллекта на практике, может любой желающий.
Высшая школа экономики запустила конкурс решений, применяющих технологии искусственного интеллекта, при подготовке дипломов. Задача конкурса — оценить использование студентами инструментов на основе генеративных моделей в выпускных квалификационных работах (ВКР), защищаемых в 2024 году.
Названы победители и призеры Национальной технологической олимпиады (НТО) по профилю «Искусственный интеллект», который уже второй год оказывается самым популярным по количеству регистраций из 41 направления НТО. В этом сезоне участниками соревнований стали более 6300 человек из 84 регионов России, а также Казахстана, Молдовы и Узбекистана. В финал вышли 104 школьника из 28 регионов России. Среди субъектов РФ по числу финалистов лидируют Москва (26 человек), Санкт-Петербург (16 человек) и Новосибирская область (13 человек).
Исследователи Центра ИИ НИУ ВШЭ выстроили систему автоматизированного контроля ручных операций, которая находит применение в промышленном производстве. Система облегчает процессы наблюдения за объектами и действиями, а также позволяет контролировать качество их исполнения.
В следующие 10 лет партнерство Яндекса и факультета компьютерных наук НИУ ВШЭ расширится по трем направлениям: создание новых образовательных программ, развитие исследований в области ИИ и применение генеративных нейросетей в учебном процессе. ФКН был основан Вышкой и Яндексом 10 лет назад и стал одним из лидеров в подготовке разработчиков и специалистов по ИИ и машинному обучению. За это время выпускниками факультета стали 3385 человек.