Физики расширили понимание магнитных вихрей

@Day.Az

Международная команда физиков изучила энергетическую структуру спирального антиферромагнетика GdRu2Si2. Были обнаружены новые особенности, что позволит улучшить приборы, использующие магнитную память. Работа опубликована в журнале Nanoscale Advances.

Как передает Day.Az со ссылкой на Habr, ежегодно на планете создаются и собираются сотни петабайт данных, которые надо где-то хранить. Используемые сейчас устройства, например типов HDD и SSD, имеют недостатки в виде относительной хрупкости и ограниченности в возможности хранения данных. Одним из следующих этапов развития данной отрасли может служить переход к магнитным накопителям, использующим небольшие "вихри". Эти магнитные вихри, называемые скирмионами, образуются в некоторых веществах и могут иметь размер в миллиардные доли метра.

Как показывают исследования, скирмионы оказались чрезвычайно устойчивы к внешним воздействиям. Ещё одной их важной особенностью является то, что учёные могут контролировать их поведение, изменяя температуру или применяя электрический ток. Однако эта область остаётся ещё довольно слабо изученной, и необходимы исследования, направленные на улучшение понимания свойств и устройства таких веществ.

Сергей Еремеев, ведущий научный сотрудник ИФПМ СО РАН, поясняет: "Центросимметричный антиферромагнетик GdRu2Si2 хорошо известен с начала 1980-х годов. Недавно он вернулся в поле зрения исследовательских проектов с открытием квадратной магнитной решётки скирмиона без геометрически нарушенной симметрии. Эта фаза скирмиона появляется во внешнем магнитном поле 2-2,5 Тл при температуре ниже 20 К. Хотя магнитные свойства материала на протяжении многих лет изучались очень подробно, появление фазы скирмиона возобновило и активизировало дискуссии, особенно касающиеся особенностей появления скирмионов".

Задачей учёных было исследование свойств этого материала и предсказание возможных кандидатов, которые могли бы обнаружить необычные свойства магнитных скирмионов, а также получение подробной информации о поверхностных и объёмных электронных структурах и, самое главное, о том, как электронная структура модифицируется при изменении температуры.

Были выращены монокристаллы GdRu2Si2 высокой чистоты и структурного качества. Образцы скалывали в сверхвысоком вакууме и проводили исследование их электронной энергетической структуры при различных температурах с помощью фотоэлектронной спектроскопии. Использование синхротронного излучения позволило получить данные высокого качества. Экспериментальные результаты сопоставлялись с расчётами электронной структуры, выполненными в рамках теории функционала плотности.

Таким образом, авторы исследовали объёмную и поверхностную электронную структуру материала GdRu2Si2. Хорошее согласие экспериментальных и теоретических результатов позволило детально охарактеризовать свойства и орбитальный состав поверхности Ферми GdRu2Si2. Удалось выяснить, что лежащая в основе образования решётки скирмионов спиральная магнитная структура материала обусловлена особенной геометрией поверхности Ферми. В частности, главную роль играют участки поверхности Ферми, отмеченные красной стрелкой на рисунке 1c. Именно они отвечают за необычное магнитное взаимодействие, приводящее к образованию магнитных вихрей. Хотя в GdRu2Si2 фаза скирмионов возникает при довольно низкой температуре, глубокое понимание лежащей в основе физики скирмионов в центросимметричных системах может помочь предсказать новые материалы, в которых скирмионы наноразмера могут появиться при существенно более высокой температуре, а возможно, даже при комнатной.

Василий Столяров, директор Центра перспективных методов мезофизики и нанотехнологий МФТИ, добавляет: "Недавно в этом материале была обнаружена квадратная решётка скирмионов. Решётка имеет период 1,9 нм и наименьший размер скирмионов, наблюдаемый на сегодняшний день. Таким образом, материал является привлекательным для разработки устройств магнитной памяти нового поколения с высокой плотностью записи и низким энергопотреблением. В дальнейшем мы планируем применить сканирующую туннельную микроскопию со спиновым разрешением, развитую у нас в центре, для визуализации магнитной текстуры поверхности в прямом пространстве".

Работу провела международная команда учёных из Института физики прочности и материаловедения СО РАН (Томск), СПбГУ, МФТИ, МИСиС, ВНИИА им. Н. Л. Духова, из Германии: Технического университета Дрездена, Франкфуртского университета им. Гёте - и Испании: Университета Страны Басков, Центра физики материалов г. Сан-Себастьян, Международного физического центра Доностии, Фонда Икербаск, а также Университета имени Иоганна Кеплера (Австрия) и Технического университета Чалмерс (Швеция).

Подписывайтесь на наш канал в WhatsApp и будьте в курсе главных новостей!

Данные о правообладателе фото и видеоматериалов взяты с сайта «Day.Az», подробнее в Правилах сервиса
Анализ
×
Еремеев Сергей
Столяров Василий
МФТИ
Сфера деятельности:Образование и наука
170
ИФПМ СО РАН
Организации
3
TUD
Сфера деятельности:Образование и наука
Университет имени Иоганна Кеплера в Линце
Сфера деятельности:Образование и наука
WhatsApp
Продукты
43