Биометрия по лицу: мировая история развития, сферы применения и способ оплаты

@NEW RETAIL
Биометрия по лицу: мировая история развития, сферы применения и способ оплаты

В XXI веке биометрическая аутентификация, когда для удостоверения личности людей используются их физические характеристики (например, отпечатки пальцев, сетчатка глаза, лицо), становится неотъемлемой частью повседневной жизни. На фоне запуска Единой Биометрической Системы (ЕБС) разложим все по полочкам. В этой статье расскажем об эволюции функции распознавания лица, актуальных сферах применения и об удобном способе оплаты.

Биометрия по лицу: мировая история развития, сферы применения и способ оплаты

Рассказывает Илья Карпейкин, директор департамента продуктов и решений компании ООО «ИНПАС КОМПАНИ».

А началось все еще до первого полета человека в космос
В 1955 году появляется машинное зрение – научное направление в области искусственного интеллекта и связанные с ним технологии получения изображений объектов реального мира, их обработки и использования. А готовые данные должны использоваться для решения разного рода прикладных задач без участия (полного или частичного) человека.
В 1960-ые годы появляются первые эксперименты в области машинного распознавания лица и первые системы обработки 2D-изображений. Актуальные задачи того времени  – спутниковая фотосъёмка, медицинская визуализация, распознавание символов и улучшение фотографий и др.  
В этот период Вуди Бледсо, профессор Техасского университета в Остине, создал систему, которая могла вручную получать фотографию лица. Вот как это было: 
● на планшете RAND размечали лицо, забивая координаты областей лица: глаза, нос, рот и линия волос – до 46 точек;
● специальный алгоритм крутил/вертел/зумировал полученное изображение – до 22 измерений;
● записанные вручную метрики впоследствии сохранялись в базе данных;
● при введении в систему новой фотографии человека можно получить наиболее похожее изображение через базу данных.
С распознаванием лица такая система справлялась в 100 раз быстрее, чем человек. 
В 1970-ые годы с ростом доступности компьютерного оборудования развивается концепция машинного построения трёхмерных образов объектов. Позже появляется возможность обрабатывать изображения в реальном времени для некоторых задач, таких как преобразование телевизионных стандартов. 
Тогда же исследователи Хармон, Голдштейн и Леск сделали ручную систему распознавания лица Бледсо более точной, используя 21 маркер лица, включая толщину губ и цвет волос. 

Биометрия по лицу: мировая история развития, сферы применения и способ оплаты

В 1988 году Майкл Кирби и Лоуренс Сирович из Университета Брауна применили подход Eigenface с использованием линейной алгебры для анализа изображений. Для разметки лиц они применяли менее 100 различных значений, доказав, что этого достаточно для точного кодирования изображения лица. 
В 1991 году Алекс Пентланд и Мэтью Терк из Массачусетского технологического института усовершенствовали технологию Eigenfaces, задействуя факторы окружающей среды. Им удалось автоматизировать процесс распознавания.
В период 1993-2000х годов Управление перспективных исследовательских проектов при Минобороне США (DAPRA) и Национальный институт стандартов и технологий (NIST) выпустили программу FERET с самой обширной базой лиц — более 14 тыс. изображений. Изначально ее использовали, чтобы находить преступников по всему миру. Затем представили в открытом доступе для стимулирования коммерческого рынка распознавания лиц.
Продолжение в XXI веке: роль США, Китая и России
С 2010 года Facebook начал использовать функцию распознавания лиц, чтобы находить пользователей на публикуемых фото и предлагать их отметить. Это обновление создало шумиху в СМИ, однако не повлияло на имидж и популярность самой социальной сети.
А в 2014 году FB запускает сервис DeepFace для распознавания лиц в толпе с точностью 97,25%, что почти соответствует способностям среднего человека (97,53 %). Такого результата удалось достичь благодаря способу построения 3D-модели лица по фотографии.
В 2011 году власти Панамы и США запустили совместный проект FaceFirst. Это технология распознавания лиц, которую изначально использовали для пресечения незаконной деятельности в аэропорту Токумен в Панаме. А впоследствии она стала крупнейшей биометрической установкой в аэропорту. В том же году полиция и спецслужбы США начали применять распознавание лиц для опознания трупов, что, в частности, помогло утвердить личность Усамы бен Ладена.

Биометрия по лицу: мировая история развития, сферы применения и способ оплаты

В 2015 году Google представила свою разработку — FaceNet, достигшая рекордной точности в 99,63% благодаря огромному массиву данных, которые собирают сервисы Google. Технологию, в частности, используют в Google Фото для сортировки изображений и автоматических отметок людей на них.
В 2016 году американский ритейлер Amazon, сегодня владеющий сетью магазинов без продавцов и кассиров, начал тестировать систему Just Walk Out. Она включает в себя:
● потолочные камеры, считывающие все перемещения покупателей;
● датчики, устанавливаемые на полках, которые измеряют вес продуктов;
● облачную инфраструктуру Amazon Web Services для обработки данных.
Интересно, что разработчики Amazon утверждают, что приватность не нарушена, так как нет никакого распознавания лица, а используются другие визуальные сигналы: походка, длина конечностей и т.д.
Пользоваться системой легко: покупателю нужно скачать приложение Amazon Go, прикрепить к нему банковскую карту и получить QR-код для входа.
В марте 2020 года Amazon объявил о продаже Just Walk Out другим торговым сетям.

Биометрия по лицу: мировая история развития, сферы применения и способ оплаты

Также в 2018 году Amazon активно продвигает свой облачный сервис для распознавания лиц и объектов – Rekognition, которым пользуются правоохранительные органы США. Система умеет распознавать до 100 человек на одном фото и искать их в базах данных, содержащих десятки миллионов лиц.
2 августа 2016 года на конференции в Нью-Йорке Samsung представила новый смартфон Galaxy Note 7 со сканером радужной оболочки глаза, чтобы повысить уровень безопасности доступа к устройству. В самой компании это аргументировали тем, что в отличие от отпечатков пальцев радужную оболочку нельзя дублировать, поскольку она имеет уникальный рисунок. 
Тогда же платежные системы MasterCard, Visa и другие финансовые организации начинают включать биометрическую аутентификацию платежей.
В марте 2017 года китайская компания Baidu запускает платформу Face++ для распознавания лица, которая обещала находить совпадения на фотографиях с вероятностью в 99,77%. На сегодняшний день сервис получил широкое распространение в Китае. Любопытно, что в отличие от США граждане КНР относятся к технологиям распознавания лица с меньшим недоверием. Можно сказать, они воспринимают это как данность и неотъемлемый элемент повседневной жизни, смирившись с отсутствием частной жизни в своей стране.  
12 сентября 2017 года компания Apple представила технологию Face ID, заменив дактилоскопический датчик «Touch ID». Всего лишь один взгляд на смартфон и личность подтверждена – iPhone разблокирован, покупка оплачена. Лицо сканируется и сравнивается с ранее записанной структурной картой лица владельца. 
Секрет успеха – в объединении передовых программных и аппаратных разработок Apple. Вот, что внутри и как это работает:
Проектор точек. Проецирует на лицо пользователя более 30 000 невидимых инфракрасных точек, по которым потом создается его математическая модель.
Инфракрасная камера. Считывает точечную структуру лица, создает изображение в инфракрасном спектре и помещает эти данные в специальный модуль процессора.
Инфракрасный излучатель. Пускает невидимый пучок инфракрасного света на лицо, что позволяет выполнить его точное сканирование даже в полной темноте.
Face ID считается самой совершенной на сегодняшний момент технологией распознавания лица. Кроме того, она еще и самообучаемая – запоминает изменения в лице с помощью нейронных сетей в процессоре смартфона.

Биометрия по лицу: мировая история развития, сферы применения и способ оплаты

26 сентября 2018 года на конференции глобальных финансовых технологий Finovate Fall в Нью-Йорке Ак Барс Банкпредставил технологию оплаты товаров и услуг при помощи лица – Face2Pay
Основное назначение – совершение покупки или прохода через барьерную область без смартфона, банковской карты и иных традиционных платежных инструментов. Как только пользователь приближается к зоне покупки или контроля, система узнает его по лицу и спишет с карты определенную сумму в рамках лимита или обеспечит свободный проход. 
Главное отличие технологии Face2Pay от схожих в том, что она уже интегрирована в платежную инфраструктуру банка.
Подведем итог: технически биометрические системы распознавания лиц работают по принципу построения и сравнения математических моделей лица. Там, где мы видим цельный образ, система видит набор данных и уникальный для каждого человека цифровой отпечаток. Анализируя и сравнивая эти данные, можно с высокой вероятностью идентифицировать и верифицировать личность.
Мировая карта применения технологии распознавания лиц
Британская компания Surfshark составила карту использования технологии распознавания лиц на государственном уровне в 194 странах мира. 
Странам был присвоен 1 из 5 статусов в зависимости от того, как они приняли технологию: в использовании, одобрена для использования (не внедрена), рассматривается, нет данных об использования, запрещена.
В общей сложности сегодня насчитывается 109 стран, которые либо используют, либо одобрили использование технологии распознавания лиц для целей наблюдения. В большинстве таких стран есть национальные базы данных и локальные алгоритмы. 
Любопытно, что Бельгия является единственной страной, где публичное использование этой технологии объявлено незаконным. А многие национальные правительства и их граждане находятся в разгаре глобальных дебатов по поводу этики и законности массовой слежки.

Биометрия по лицу: мировая история развития, сферы применения и способ оплаты

surfshark.com
Сферы применения сегодня: кому и зачем это нужно
Если обобщить весь мировой опыт, то можно выделить следующие наиболее распространенные сферы применения технологии распознавания лиц.
1. Обеспечение национальной безопасности: 
распознавание лиц людей и их действий, объектов окружающей среды;
● поиск преступников и нелегальных иммигрантов; 
● обнаружение сцен убийства; 
● фильтрация неподобающего контента.
2. Помощь службе безопасности и HR-отделу 
● контроль доступа в здание; 
● биометрический учет рабочего времени: система фотографирует сотрудника, распознает его и автоматически делает запись в табеле о начале и окончании рабочего дня;
● мониторинг активности и вовлеченности сотрудника в течение рабочего дня, что позволяет, например, разгрузить сильных менеджеров от рутины или избавиться от слабых.
3. Оптимизация работы банков, кредитных и страховых компаний
● хранение достоверных данных о клиентах и верификация их личности при проверке и совершении операций;
● повышение лояльности клиентов, так как не нужно посещать офис и ожидать ручной проверки;
● выявление мошенников; 
● внедрение биометрических банкоматов, в которых можно снять наличные деньги без карты и без PIN-кода. 

4. Удобная логистика
● упрощение процедуры проверки документов водителей и контроля при перевозке специальных грузов (рецептурные лекарства, дорогое оборудование);
● исключение третьих лиц из процесса перевозки;
● контроль доступа на склады; 
● мониторинг состояния водителя: насколько он сосредоточен, не уснул ли за рулем.
5. Персонализация клиентского опыта и повышение лояльности целевой аудитории (ЦА):   
● определение точечного портрета ЦА: пол, возраст, этническая принадлежность;
● аналитика посещений: подсчет уникальных посетителей, распознавание постоянных клиентов, отслеживание маршрута посетителя;
● автоматические предложения индивидуальных программ лояльности и разработка более прицельных маркетинговых кампаний;
● внедрение интерактивной рекламы, когда специальные рекламные щиты или мониторы оснащены датчиками и камерами. Далее обеспечивается взаимодействие с людьми с отслеживанием их ответной реакции и оценкой эффективности рекламы в реальном времени.
6. Инновации в ритейле и общепите
● идентификация клиента и предотвращение мошенничества во время покупки в магазине; 
● анализ поведения покупателей и оптимизация сервисов так, чтобы продавать больше;
● удобная оплата по лицу без использования банковской карты, смартфона и других платежных устройств.

Биометрия по лицу: мировая история развития, сферы применения и способ оплатыРоссийский путь и запуск биометрической оплаты по лицу

На мировой арене Россия достигла внушительного прогресса в области распознавания лиц. Алгоритмы от отечественных разработчиков считаются одними из самых точных в мире, по данным Национального института стандартов и технологий в США, NIST. Примером является приложение FindFace с точностью 99% от компании NTechLab.  
Давайте посмотрим, какой такой путь уже пройден.
2017 год: Банк России и Ростелеком создают Единую Биометрическую Систему ( ЕБС) для сбора у населения двух параметров – голоса и лица – и распознавания личности впоследствии. Роль Ростелеком – разработчик и оператор ЕБС как одного из ключевых элементов механизмов удаленной идентификации.
Драйвером для создания ЕБС стала национальная программа «Цифровая экономика Российской Федерации». В задачи программы в том числе входит повышение доступности безопасных цифровых сервисов для граждан в отдаленных регионах и маломобильного населения.
2018 – 2019 год: подключение к ЕБС банков и коммерческих организаций, уполномоченных собирать биометрическую информацию и предоставлять дистанционные услуги с использованием удалённой идентификации.
30 июня 2018 года: ЕБС начинает работать в России. Финансовая отрасль стала первым сектором экономики, где применяться система. Удалось полностью цифровизировать взаимодействие с пользователями – физическими лицами, перевести в онлайн операции по открытию счета, вклада и получению кредита. 
С 2018 года Ак Барс Банк развивает собственную экосистему сервисов для бизнеса на основе компьютерного зрения – Face2. В портфеле продуктов есть платежная система на базе распознавания лица Face2Pay, первое внедрение которой состоялось в Бассейне Мирас в Альметевске. В кейсе присутствует валидация по лицу (не надо носить с собой карточку абонемента) и реализация внутренних платежей по лицу (пополнение бюджета, оплата на кассах, включая магазины на территории бассейна).
Апрель 2019 года: VISA представила технологию оплаты с помощью биометрииSWIP. Продавцу нужно пройти двухфакторную аутентификацию: зарегистрировать ЮЛ в SWIP и у эквайера. А пользователю – зарегистрироваться в приложении, привязав свою банковскую карту, и на кассе уже только предъявить свое лицо.

Данные о правообладателе фото и видеоматериалов взяты с сайта «NEW RETAIL», подробнее в Правилах сервиса
Анализ
×
Карпейкин Илья
Кирби Майкл
Терк Мэтью
Банк России
Сфера деятельности:Страхование
865
Google
Сфера деятельности:Образование и наука
226
Apple
Сфера деятельности:Связь и ИТ
183
ПАО "РОСТЕЛЕКОМ"
Сфера деятельности:Операции с недвижимым имуществом, аренда и прочие услуги
252
Amazon.com, Inc.
Сфера деятельности:Розничная торговля
118