Аддитивные технологии – что это такое и где применяются

@Skolkovo

Передовые производственные технологии (Advanced Manufacturing Technology) станут одним из приоритетных направлений развития науки, техники и технологий в России.

Технологический процесс не стоит на месте, с каждым днем происходит усовершенствование цифровых технологий, что позволяет использовать новшества в различных сферах жизни человека. Аддитивные технологии - одни из самых передовых и востребованных во всем мире.

Аддитивные технологии – что это такое?

Аддитивные технологии (Additive Manufacturing – от слова аддитивность – прибавляемый) – это послойное наращивание и синтез объекта с помощью компьютерных 3d технологий. Изобретение принадлежит Чарльзу Халлу, в 1986 г. сконструировавшему первый стереолитографический трехмерный принтер. Что значит аддитивный процесс послойного создания модели и как он происходит? В современной промышленности это несколько разных процессов, в результате которых моделируется 3d объект:

  • UV-облучение;
  • экструзия;
  • струйное напыление;
  • сплавление;
  • ламинирование.

Материалы, используемые в аддитивных технологиях:

  • воск;
  • гипсовый порошок;
  • жидкие фотополимеры;
  • металлические порошки;
  • разного рода полиамиды;
  • полистирол.

Применение аддитивных технологий

Технологический прогресс способствует производству множества полезных вещей для быта, здоровья и безопасности человека, например аддитивные технологии в авиастроении помогают создавать более высокоэкономичный и легкий по весу авиатранспорт, при этом его аэродинамические свойства сохраняются в полном объеме. Это стало возможным в результате применения принципов строения костей птичьего крыла в проектировании крыльев самолета. Другие сферы применения аддитивных технологий:

  • строительство;
  • сельскохозяйственная промышленность;
  • машиностроение;
  • судостроение;
  • космонавтика;
  • медицина и фармакология.

Аддитивные 3d технологии

Динамически развивающиеся быстрыми темпами аддитивные технологии 3d печати используются в прогрессивных производствах. Существует несколько инновационных видов аддитивных технологий:

  1. FDM (Fused deposition modeling) – изделие формируется послойно из расплавленной пластиковой нити.
  2. CJP (ColorJet printing) – единственная в мире 3d полноцветная печать с принципом склеивания порошка, состоящего из гипса.
  3. SLS (Selective Laser Sintering) – технология лазерного запекания, при которой образуются особо прочные объекты любых размеров.
  4. MJM (MultiJet Modeling) многоструйное 3d моделирование с использованием фотополимеров и воска.
  5. SLA (Laser Stereolithography) – с помощью лазера происходит послойное отвердевание жидкого полимера.

Аддитивные технологии в машиностроении

Джим Корр, американский инженер использует аддитивное производство в машиностроении уже в течении 15 лет. Проект Urbee, компании Kor Ecologic – это создание первого прототипа 3d автомобиля со скоростью 112 км/ч, его кузов и некоторые детали напечатаны на 3d принтере. Другая компания Local Motors в ноябре 2015 г. представила «умный и безопасный» автомобиль LMSD Swim – 75% деталей которого, выполнены с помощью трехмерной печати используя АБС-пластик и углеволокно.

Аддитивные технологии в строительстве

Аддитивное производство зданий и различных сооружений существенно сокращает время застройки. Строительная 3D печать в тренде по всему миру. Эксперименты, производимые на лазерных 3d-принтерах для обывателей выглядят на грани фантастичных. Аддитивные 3D технологии – положительные аспекты в строительстве:

  • экономия времени и финансовых затрат (скорость возведения в считанные дни снижение затрат на логистику, расходные материалы, наем большого количества персонала);
  • воплощение в жизнь любых дизайнерских решений и сложных геометрических форм (средневековые замки, дома в форме астероидов и галактик);
  • возможность строить дома с учетом сейсмоустойчивости в зонах, склонным к землетрясениям и ураганам.

Аддитивные технологии в медицине

В 2016 г. для медицины стал прорывом благодаря аддитивным 3d технологиям. Качество медицинских услуг возросло в разы. Аддитивный процесс затронул несколько сфер здравоохранения и это снизило смертность среди пациентов, нуждающихся в качественных и срочных медицинских услугах. Преимущества использования аддитивной 3d печати в медицине:

  1. С помощью томографических снимков стала возможной в высокой точностью печать органа с патологией для изучения тонкостей и нюансов предстоящей операции.
  2. Трансплантология шагнула далеко вперед. Аддитивные технологии здесь решают сразу несколько задач – морально-этическую и сокращение времени ожидания, известный факт, что люди по нескольку лет ждут донорские органы, но иногда счет идет не на года, а на дни и даже часы. В скором времени пересадка искусственно выращенных человеческих органов станет реальностью.
  3. Печать стерильного инструментария. В эпоху тяжелых и неизлечимых вирусных инфекций, одноразовые стерильные инструменты сводят на нет заражение во время медицинских манипуляций.

На сегодняшний день, в медицине успешно применяются следующие продукты аддитивных технологий:

  • искусственно выращенная человеческая кожа (актуальна для пересадки людям с высокой площадью ожогов);
  • биосовместимая костная и хрящевая ткань;
  • печать органов с онкологическим процессом и изучения влияния лекарств на опухоли;
  • стоматологические импланты, протезы, коронки;
  • индивидуальные слуховые аппараты;
  • ортопедические протезы.

Аддитивные технологии в фармакологии

При обилии современных медикаментов, для врача важно знать, что такое аддитивный эффект в лекарствах, от этого зависит успех лечения. Совокупное действие принятых препаратов во время лечения должно быть синергичным (взаимодополняющим и усиливающим), но не всегда это так. Все зависит от индивидуальной непереносимости, состояния организма. Аддитивные технологии приходят на помощь и здесь. Уже тестируются напечатанные 3d таблетки Spritam от эпилепсии, в которых заложена информация о пациенте: пол, вес, возраст, состояние печени, индивидуальная дозировка.

Аддитивные технологии в образовании

Аддитивные технологии в школе уже активно внедряются, если еще недавно школьники изучали 3d моделирование в специализированных компьютерных программах, то сейчас уже стала возможной печать смоделированного изображения в объеме. Учащиеся наглядно видят свои изобретения, допущенные ошибки и как механизм работает. К 2018 году Министерство образования планирует обучить аддитивным технологиям в учебных заведениях 3000 педагогов.

Программу "Завтра в мире" ведёт Лариса Катышева.

Гость в студии - Александр Фертман, директор по науке, технологиям и образованию Фонда "Сколково".

С ним мы обсуждили, что такое "Индустрия 4.0", что такое новейшие технологии и как они реализуются в мире и в России, в частности.

Что такое передовые технологии? В массовом понимании, когда произносится фраза "технологии XXI века" - это IT-технологии. Да, они составляют значительную часть передовых технологий, но это далеко не всё. И есть европейская программа индустриализации "Industry 4.0" и есть американская "Advanced Manufacturing Programs" . Что внутри этих программ?

А. Фертман: Не могу не сказать о том, что, конечно, не зря в массовом сознании информационные технологии занимают существенное место. Точно так же и в рамках передовых производственных технологий без информационных технологий, без цифровизации программ, которые сейчас разрабатываются в стране, никуда не деться. И они занимают в них существенное место.

Однако, безусловно, кроме мира виртуального, мира цифр, мы с вами едим и потребляем самые разные физические продукты. И вот как производить их быстрее, качественнее, с более высокой точностью, с меньшим количеством отходов, с лучшей энергоэффективностью, вот об этом всём заботятся передовые производственные технологии, формируя новый промышленный уклад. Когда сегодня говорят о новой промышленной революции, во многом это речь о передовых производственных технологиях (это наш вольный или невольный перевод английского термина "advanced manufacturing").

Что находится внутри? В первую очередь, это цифровое проектирование и моделирование . Это технологии, позволяющие создавать цифровых двойников не только самого продукта или, как мы раньше просто переводили чертёж в цифру, пользуясь на компьютере теми программами, которые позволяли нам формировать образ объекта, нет, сегодня и процессы, которые происходят в этом объекте, и моделирование его жизненного цикла, и то, как он будет использоваться, - всё это переводится в цифру, и только тогда приносит по-настоящему большую выгоду.

А можно какой-нибудь пример, чтобы ощутить это?

А. Фертман: Самый известный на сегодня пример в Российской Федерации - проект "Кортеж" , когда создавался образ продукта - нового президентского автомобиля, на базе которого будут созданы и массовые автомобили. Сроки и требования к качеству, понятно, в этом случае были очень жёсткие. Большая часть российской индустрии сказала, что это нереально. Проектировать взялся Петербургский политехнический университет, Инжиниринговый центр его Института передовых производственных технологий под руководством Алексея Ивановича Боровкова . А основным исполнителем стал НАМИ .

И этот проект весь целиком был сначала сделан в цифре. То есть, все испытания, все краш-тесты были сначала промоделированы. Не было натурных испытаний. Первое натурное испытание прошло в начале лета 2016 года в Берлине. Ну, так как всегда хочется проверить созданное на международной арене, на известных полигонах, которые уже проверяли не один подобный автомобиль. И с первого раза этот автомобиль получил высшую оценку по шкале безопасности.

Понятно, что его надо было сделать максимально лёгким, чтобы можно было на него навесить как можно больше защиты. Возникли новые производственные процессы, которые тоже сначала были протестированы в цифре. В общем, даже наши зарубежные партнёры были удивлены тем, как нам удалось быстро и эффектно создать новый автомобиль.

А. Фертман: Безусловно. Материалы являются вторым ключевым элементом передовых производственных технологий. Создание новых материалов является для любой отрасли корневым делом. Без новых материалов переходить к производству новых продуктов сегодня очень тяжело. Мы в какой-то момент даже в Сколково предполагали создавать новый кластер материалов, потому что во всех наших пяти направлениях материалы играют ключевую роль.

Но сегодня материалы должны разрабатываться так же, как разрабатываются конструкции. То есть, во многом в цифровой форме должна существовать возможность развивать материалы и конструкцию одновременно. Такая возможность сегодня в американских нормативах уже заложена, когда 30 процентов времени проекта продукт развивается без фиксации материала. Не так, когда взял из справочника материал наш конструктор, зафиксировал его и из него уже делает конструкцию. Нет. Вы выставляете требования к материалу, и только после этого разрабатываете его вместе с конструкцией. У вас получается единый инженерный объект.

Не придумываете, а что же можно сделать из этой деревяшечки, которая дана, а сначала решаете задачу, а потом приспосабливаете, через какой материал вы можете её реализовать?

А. Фертман: Да. Это очень важная особенность. И, конечно, здесь придётся работать и с нормативной базой, изменять сам процесс сертификации, проводить цифровую сертификацию материалов, сначала проверяя их на кодах и сверяя с теми данными о материалах, которые у нас есть. Такой проект цифровой сертификации запускает сейчас Сколковский институт науки и технологий (Сколтех) в рамках Национальной технологической инициативы.

Но ведь это будет способствовать появлению всё новых и новых материалов?

А. Фертман: Да. Но это есть всё-таки и некая оптимизационная схема, когда вы улучшаете качество материала, делаете его всё подходящим под те функциональные задачи, которые перед вами стоят. Мы надеемся, что удастся разрабатывать материалы не со скоростью материал в 15-20 лет, а чуть побыстрее. Рынок требует сегодня этого.

Раньше действительно материалы разрабатывались с такой уважаемой скоростью, так солидно? К примеру, тот же самый пластик. Сколько над ним бились?

А. Фертман: Разные виды полимеров разрабатывались и по 15, и по 20 лет. Если говорить о металлах, о новых сплавах, то бывали и ещё более длительные циклы. Но сегодня рынок не терпит так долго. Материаловеды, физики, химики, нанотехнологи фактически достают задачи и решения этих задач из наработанного материала. Очень многое было наработано и не использовано за последние 50 лет. Они пытаются оптимизировать существующие материалы. И кое-что из этого удаётся сделать.

То есть, что-то достаётся буквально из столов?

А. Фертман: Я бы не сказал, что буквально достаётся из столов. Идеи достаются из столов. Ведь магистральный путь, как в Советском Союзе, так и в США, в то время сильно конкурировавших, не позволял отвлекаться на мелочи. А вокруг магистрального пути всегда существовало много интересных идей. И эти идеи откладывались в сторону, не всегда развивались. В Штатах больше развивались, в нашей стране меньше развивались. И сейчас на новом витке технологий, когда мы можем работать уже лучше с материалом в проектной форме, я думаю, нам удастся какие-то идеи реализовать из предыдущего поколения.

То есть, вы обращаетесь сейчас к учёным предыдущего поколения?

А. Фертман: Я обращаюсь к связи учёных предыдущего поколения с новым поколением. Невозможно опереться только на людей старшего поколения, но отметать их опыт, безусловно, неграмотно. Надеюсь на то, что они смогут в короткое время передать наработанные навыки, а главное: международную кооперацию, свои связи, своё понимание современного мира - молодым ребятам, потому что моё поколение, поколение 40-45-летних, из науки всё-таки по многим причинам вымыто.

Есть американская программа "Advanced Manufacturing" , есть европейская , разработанная немцами, но она всё-таки считается европейской, "Industrie 4.0" и есть российская Национально-технологическая инициатива. Наша к чему ближе: к европейской или к американской? А те как-то друг от друга отличаются? Или они взаимодействуют между собой? Что здесь происходит?

А. Фертман: Очень важный вопрос. Европейская и американская программы, безусловно, похожи. Они обе опираются на новый цифровой мир, на новый цифровой уклад.

Но есть между ними и очень существенная разница, которая заключается в том, чтоцели американской программы - это создание высокопроизводительных рабочих мест на территории США и глобальная конкурентоспособность экономики страны. Эти цели очень близки России. На сегодняшний день нам очень не хватает высокопроизводительных рабочих мест и конкурентоспособности во многих отраслях.

Европейская программа нацелена на лидерство Германии во внедрении и разработке киберфизических систем. Здесь на сегодняшний день, сфокусировавшись только на киберфизических системах, нам будет чрезвычайно сложно догонять.

Поэтому программа ("дорожная карта") рабочей группы "Технет" , которая была принята 14 февраля 2017 года на Совете по модернизации, является сплавом из европейской и американской программ . Где-то учитываем опыт и наших китайских коллег . Мы развиваем как цифровые технологии, так и технологии разработки и создания новых материалов, технологии обработки новых материалов, очень модные сегодня аддитивные технологии, технологии промышленного Интернета, технологии связи между компонентами промышленного производства.

Где сейчас в России есть такие точки, где происходит это кипение, где создаётся будущее?

А. Фертман: Никуда не денутся Москва и Санкт-Петербург . Мы работаем в направлении очень хорошей кооперации с Сибирью (Новосибирск, Томск, в последнее время ещё и Иркутск), с Уралом (Екатеринбург). Там очень сильный в промышленных технологиях кластер. И связано это не только с возможностями по разработке, но и индустрия, востребовавшая новые производственные технологии, в Свердловской области очень хорошо развита. Могу сказать, что именно Екатеринбург показал наиболее интересные проекты в области производственных технологий в рамках последнего стартап-тура.

Ну и про Сколково. Что в Сколково в этом направлении сейчас происходит?

А. Фертман: Две вещи, которые я бы хотел отметить. Первая. Понимая, что передовые индустрии, а это преимущественно два направления: ядерные и космические технологии , очень сильно востребуют advanced manufacturing , весь этот набор технологических решений, административно было принято решение об объединении кластеров ядерных и космических технологий. Сегодня он называется кластером передовых производственных, космических и ядерных технологий . И это не просто формальное объединение.

Конечно, никуда не денутся и те направления, которыми мы занимались последние шесть лет. Однако сборка и в какой-то степени инжиниринг всех компаний, которые разрабатывают передовые производственные технологии, технологии цифрового моделирования, технологии автоматизации и роботизации, технологии создания новых материалов, технологии контроля и промышленного Интернета, это их объединение и предложение российской индустрии является, наверное, ключевой вещью для нового кластера.

Есть примеры и в области цифрового проектирования и моделирования. Есть очень интересные решения и в области аддитивных технологий.

Что такое аддитивные технологии?

А. Фертман: Аддитивные технологии - это технологии, которые позволяют не отрезать от целого кусочки для того, чтобы сформировать деталь, а выращивать деталь фактически на пустом месте слой за слоем, добавляя один слой за другим. И для того чтобы процесс создания детали привести в порядок, то есть понять, как он происходит, а это не простая вещь - спекание слой за слоем, у нас компания "КинтехЛаб" разработала программный пакет, позволяющий не только прогнозировать, какие будут физические свойства изготавливаемой детали, но и в процессе изготовления подсказывать производителю, какие изменения требуется внести в производство. Это один из лучших программных пакетов в мире на сегодняшний день, и он продаётся как в РФ, так и за рубежом.

Очень интересна и всем будет понятна история о создании платформы 3D-приложений . Предположим, у вас есть очень сложный объект. Пусть это будет даже ваш дом. Его проект, его визуальное изображение, 3D-модель вашего дома обычно требует достаточно больших компьютерных мощностей. Если вы будете представлять это в виде 3D-приложения, то вы сможете посмотреть довольно детально все конструкции своего дома даже на смартфоне. И компания "ВГТ" ("WGT ") такую платформу для представления сложных объектов малыми компьютерными силами уже разработала и предоставляет её и Росатому, и Ростеху

Аналоги этого в мире есть?

А. Фертман: Конечно, есть те, кто стараются делать то же самое, но, на наш взгляд, "ВГТ" продвинулась дальше остальных.

Безусловно, нельзя не упомянуть о каких-то материальных технологиях. Например, о технологиях контроля промышленного производства . Компания "Техноавтомат" , например, обратила свой взор на важную для России отрасль нефтедобычи и нефтетранспортировки. Их ультразвуковое устройство позволяет контролировать уровень жидкости в замкнутом нефтепроводе, то, чего раньше делать не удавалось. Совершенно не возмущающим образом определять, какова ситуация с заполненностью нефтепровода или любого другого закрытого объекта.

Важнейшим аспектом является промышленный Интернет . Собирая информацию с динамических систем: станков, турбин, вы можете оптимизировать их действия, уменьшить простои, улучшить эффективность использования. В этом случае вы изменяете свою бизнес-модель, увеличивая количество собираемой информации, используете новые алгоритмы предсказательной аналитики и повышаете выгоду от использования той или иной системы.

Это как раз про то, что развитие этого направления современных технологий оказывает влияние на экономику прямо уже сейчас?

А. Фертман: Да, уже сегодня. И те системы, которые разрабатывают сколковские компании "Signum Winnum", "Твинс технологии", "КРИТ" , используются на современных предприятиях. То есть, они контролируют работу станков, оптимизируют эту работу, уменьшают простои и таким образом реально повышают эффективность экономики предприятия. На 40-50 процентов можно улучшить экономические показатели предприятия при использовании таких систем.

Полностью беседу с гостем программы слушайте в аудиофайле.

Выполнению главной задачи подчинены все остальные задания пятилетнего плана . В планах предусматриваются максимально возможные темпы развития прогрессивных отраслей в сочетании с гармоничным развитием всего народного хозяйства , концентрация капитальных вложений и материальных ресурсов на наиболее важных строящихся объектах с целью сокращения сроков их строительства и быстрейшего наращивания новых производственных мощностей . Плановые задания устанавливаются с учетом наиболее полного использования резервов предприятий и строек, внедрения новой техники и передовой технологии.  

В нефтеперерабатывающей и при нормировании труда устанавливают нормы времени , выработки, обслуживания и штата. Нормы труда строятся на основе передовой технологии и передовых методов труда , они предусматривают работу при стандартном качестве предмета и орудий труда , рациональной организации трудового процесса и максимальном использовании производственной мощности оборудования.  

Внедрение новых, более производительных орудий труда , передовой технологии, использование укрупненных аппаратов (установок), автоматизация и механизация производства, позволяют значительно сократить затраты живого труда , повысить качество продукции , материальных ресурсов , изменить структуру потребления сырьевых ресурсов , заменить металлы, пищевое сырье более дешевыми и часто более качественными продуктами химической и нефтехимической промышленности , увеличить выход целевой продукции , сократить потери, улучшить использование основных производственных фондов.  

Небольшие по размерам изделия, не требующие самой передовой технологии для производства (например, кино-и фотоаппараты, а также часы среднего качества), подходят как для экспорта, так и для производства на зарубежных филиалах. В этом случае осуществлять производ-контроль легко, поэтому такие товары могут  

Другой важнейшей сфере деятельности корпорации - управлению научными исследованиями и разработками - посвящена гл. 10. Эта деятельность постоянно находится в центре внимания высшего руководства, а результаты ее достаточно широко известны. Внимание к передовым технологиям и правильная организация управления созданием новой техники обеспечивают японским корпорациям экономическое развитие , завоевание новых рынков сбыта. Вначале материал этой главы может вызвать недоумение. Читатель не найдет привычных для себя проблем планирования, оценки деятельности , финансирования и др., которые обычно рассматриваются в аналогичной отечественной литературе 2. Но вдумавшись, он придет к выводу, что анализируются действительно важные проблемы, над которыми целесообразно поразмышлять.  

Японские производители импортируют передовую технологию не только с целью ее освоения и производства товаров на экспорт, но и с целью изучения зарубежного рынка. Эта возможность должна полностью использоваться в современных условиях.  

Одна из величайших и до сих пор не разгаданных тайн японской экономики заключается в том, что освоение современной передовой технологии и производство новейшего ассортимента промышленных изделий соотносятся с культурной и социальной спецификой жизни нашего народа. Для среднего европейца и американца Япония - это страна, где господствует традиционная культура и восточная экзотика. Отсюда и все возрастающий интерес к принципам согласования национальных традиций с возможностями вступления в эру современной технологии.  

При таком подходе очевидно, что современная передовая технология, которая получит широкое практическое применение на протяжении 80-х годов и постепенно станет сердцевиной технического развития текущего десятилетия, это в первую очередь электронная технология, достигшая вершины своей зрелости.  

Второй момент в нынешнем десятилетии решающее значение приобретает процесс массового практического освоения технологий. Его основой в 80-е годы будут составные части устройства - компоненты типа микропроцессоров, запоминающих устройств, сенсоров и новых материалов. Для технологического развития внезапное системное изменение нетипично как правило, речь идет об использовании уже известных частных технологических решений , разработке новых концепций и функционально новых изделий наряду с усовершенствованием уже имеющихся. Важнейшим аспектом передовой технологии сверхбольших интегральных схем будет ее применение.  

В центре внимания разработок по волоконно-оптическим средствам связи - также переориентация на массовое производство . Волоконная оптика намного эффективнее в эксплуатации, чем проволочные кабели однако волоконно-оптические системы все еще дороги. Снижение издержек их производства стало сегодня главной задачей. Выпуск относительно дешевых высокоэффективных световодов и оптических устройств не может быть достигнут без перехода к передовой технологии массового производства.  

Сложилось представление, будто переход на рельсы высокоразвитой технологии ставит Японию в трудное положение. Но передовые технологии 80-х годов, которые сейчас находятся на стадии промышленного освоения, в действительности полностью отвечают возможностям Японии.  

При производстве перечисленных изделий будет широко использоваться такая высокотехнологичная продукция, как микропроцессоры на сверхбольших интегральных схемах, лазеры, полупроводниковые приборы с зарядовой связью, устройства по распознаванию речи, графические дисплеи и волоконная оптика. Самым сильным стимулом, более того, движущей силой процесса освоения передовых технологий станет жесткая конкуренция, охватывающая и этапы создания , и этапы рыночной реализации высокотехнологичной продукции.  

В последнее время развивается новая форма научного обмена. Управление по науке и технике с 1983 г. взяло курс на привлечение иностранных ученых к участию в ряде проектов, связанных с созданием самой передовой технологии. Впервые государственные научно-исследовательские учреждения Японии принимают иностранных ученых. Для Японии - это приток свежих идей... И если до сих пор Япония страдала от утечки мозгов, то теперь, не жалея сил, следует привлекать лучшие умы и давать  

Еще один тип технического сотрудничества связан с экспортными поставками деталей, материалов, промышленных полуфабрикатов. Как было показано в главе VI, центральные звенья современных технологий - это полупроводниковые устройства, их компоненты и новые материалы. В любом списке передовых технологий можно встретить по крайней мере сверхбольшие интегральные схемы, сенсоры, оптическое волокно, углеродное волокно, аморфные материалы и сверхпрочную керамику. Каждая из этих технологий требует колоссальных средств на стадии разработки и поистине астрономических - на стадии создания оборудования для промышленного освоения.  

Рисковые фирмы, вероятно, лучше приспособлены для поисков новых направлений . Как только найдена путеводная нить и определена отправная точка, финансовые и организационные возможности крупной фирмы оказываются большим преимуществом. Правда, следует иметь в виду, что термины передовая технология и технология будущего охватывают очень широкие области. Рисковые фирмы лучше всего подходят для таких направлений, как разработка новых материалов, где залогом успеха нередко являются неожиданные открытия, но таким фирмам не под силу разрабатывать полупроводниковые элементы, так как для этого требуются крупные, хорошо оборудованные лаборатории. В биотехнологии на грани чистой науки талантливые исследователи - люди, одаренные живым воображением, - могут очень много сделать именно в рисковых фирмах. В электронике, где развито конструирование механизмов, творческие возможности исследователей раскрываются полнее всего, если они работают в крупных корпорациях.  

Система исследовательских работ для развития передовых технологий, разрабатываемая под эгидой Управления науки и техники, обслуживает фундаментальные научные исследования . Ее задача - искать зачатки новых, революционных направлений развития технологии, начиная буквально с нуля. Некоторые результаты этой работы уже имеются (табл. 14).  

В крупномасштабных проектах, связанных с передовой технологией наших дней и технологией будущего, работа ведется преимущественно большими группами ученых. Поэтому коллективные формы работы очень важны. При этом желательно, чтобы в них сохранялся стимул к взаимодействию участников, - некий заряд, вызывающий импульсы творческой активности.  

Наше время - это время самого широкого распространения техники. Технологии быстро доводятся до совершенства, и затраты на производство падают, что открывает более широкие возможности для применения самых передовых технологий в производстве товаров повседневного спроса . Сегодня люди покупают товары скорее уже не по жесткой нужде, а по желанию наши дома и так битком набиты вещами. И в дальнейшем будут хорошо продаваться не предметы первой необходимости - они уже есть у всех, - а то, что так или иначе украшает жизнь. Классический пример - видеомагнитофон. Если телевизор стал необходимой принадлежностью каждого дома, то с видеомагнитофоном этого пока не произошло. Именно поэтому видеомагнитофоны распространяются медленнее, чем некогда распространялись черно-белые и цветные те-  

Последнее десятилетие ознаменовалось известным ростом коэффициентов отдачи недр. Применение методов интенсификации разработки нефтяных месторождений позволило значительно повысить отдачу недр, однако даже при использовании передовой технологии в недрах остается не менее 50-60% всего запаса.  

Во-вторых, ведущей компании необходимо чрезвычайно конкурентоспособной передовой технологией. Этот уровень технологии передается примыкающим к ведущей компании фирмам, что приводит к повышению и их конкурентоспособности. При этом должен возникать синер-гический эффект от обратного воздействия на ведущую компанию переноса передового технологического уровня. Например, Хитати и Ниппон электрик накопили большой технологический опыт и мастерство в электронике, что к повышению качества не только конечной про-I, но и интегральных схем. При этом в процессе вертикального интегрирования производства БИС компании не только получают высококачественные узлы, но и рас-базис своей технологии.  

Сейко не была сильна в электронике, но ее руководство чувствовало необходимость в овладении передовой технологией и набрало молодых способных выпускников университетов, что позволило резко усилить ее возможности в этой области. Компании пришлось наладить выпуск интегральных схем, потому что других производителей этой продукции просто не было. Разработанная Сейко технология была перенесена в производство других новых изделий , таких, как портативные принтеры для персональных компьютеров и даже сами персональные компьютеры.  

Поскольку внешняя экспансия способствует переносу передовой технологии, отношение объем исследований и разработок/объем продаж материнской компании но быть высоким. Это подтверждается многпмп вателями.  

Различные подходы государств данной группы к решению этих вопросов - один из весьма характерных примеров воздействия их социально-экономической и политической ориентации на стратегию использования нефтеденег. Нефтяные монархии района Персидского залива, наиболее типичным представителем которых выступает Саудовская Аравия , видят практически единственный способ гарантировать освоение передовой технологии своей обрабатывающей промышленностью и обеспечить внешние рынки сбыта для ее продукции в налаживании максимально тесного сотрудничества с фирмами стран Запада и Японии, прежде всего с их крупнейшими транснациональными корпорациями , т. е. в привлечении их предпринимательского капитала к са мому широкому участию в предприятиях обрабатывающей промышленности, особенно смешанных, и уже достаточно далеко продвинулись по этому пути. Причем иностранные инвесторы , нередко почти наравне с местными частными предпринимателями, здесь пользуются льготами и преимуществами, пожалуй, беспрецедентными в развивающемся мире.  

Когда Уэлч принял на себя руководство фирмой, у Дженерал Электрик было много застойных товарных серий, она испытывала сильную конкуренцию по всем направлениям своей деловой деятельности. Уэлч продолжил политику отказа от ряда направлений, что привело к продаже почти 200 предприятий. Затем он приобрел 70 предприятий, работающих на основе передовой технологии и занимающихся предоставлением услуг. Он провел массовое сокращение штатов, что привело к ликвидации 100 тыс. рабочих мест и принесло ему кличку Нейтронный Джек (намек на нейтронную бомбу, когда люди гибнут, но здания остаются целыми).  

Среди них особое внимание в Японии и за рубежом привлекли Сравнительная технология техническая мощь Японии (1980 г.) Технологическая сверхдержава стратегия Японии (1981 г.) Война в сфере НИОКР между Японией, США и Западной Европой (1981 г.) Позиции Японии в области передовой технологии (1982 г.). Основные идеи названных работ достаточно полно отражены и развиты в переведенных на английский язык книгах, вышедших в Японии в последующие годы. Две из них переведены на русский язык и предлагаются вниманию читателей.  

Западноевропейские фирмы находятся в сильной зависимости от США и Японии в сфере передовой технологии, особенно в области электроники. Причины отставания стран ЕЭС - в недостаточном уровне исследований, инноваций, инвестиций - трех фундаментальных детерминантов технического прогресса . Доля затрат ЕЭС в мировых расходах на НИОКР довольно значительна и составляет 25% (США -35%, Япония-12%), но эти расходы складываются из сумм стран-членов и не являются совместным финансированием исследований. Например, за период 1979-1983 гг. страны ЕЭС затратили независимо друг от друга больше средств на разработку микропроцессоров, чем Япония. Однако в настоящее время японцы контролируют 40% мирового рынка микропроцессорной техники, а ЕЭС - 10% 2.  

В начале 80-х годов японское правительство выступило инициатором ряда новых крупных национальных программ , свидетельствующих о том, что государственные органы перешли к динамичному планированию научно-технических исследований в соответствии с достигнутым уровнем промышленного производства и появляющимися новыми возможностями освоения передовых технологий. М. Моритани подробно характеризует некоторые наиболее представительные исследовательские программы , курируемые японским правительством. Аналогичные по характеру программы разработаны или разрабатываются практически по всем перспективным направлениям НИОКР. На начало 1984 г. насчитывалось около 50 таких совместных с частными корпорациями программ со сроками окончания исследований в 1990-1995 гг.  

Конечно же, не вызывает сомнения мощь Соединенных Штатов в НИОКР, охватывающих высокотехнологичную продукцию. Непросто предвидеть, как развернется соревнование между этими двумя странами и насколько конкурентоспособной будет их продукция, когда начнется коммерческое использование передовых технологий. Тем не менее сопоставление уровня разработок и масштаба применения ведущих технологий в Японии и в Соединенных Штатах приводит к такому заключению  

А вот и более свежие примеры. Именно в Великобритании родилась идея интегральной схемы. Добавим к этому, что принцип, положенный в основу контакта Джо-зефсона, так называемого элемента будущего, который привлекает сегодня большое внимание как преемник сверхбольших интегральных схем, сформулирован Б. Д. Джозефсоном, когда он был еще аспирантом Кембриджа. Наконец, сканер-компьютеризированная рентгеновская система, одна из передовых технологий современной медицинской электроники, разработан английским инженером Дж. Н. Хаундсфилдом. За эти достижения  

Несомненно, многое в современной технике трудно отнести К категории самобытного или творческого. Страны всего мира вкладывают такие усилия в исследования и разработки, прежде всего в сфере передовых технологий, отнесенных к третьему этапу технического развития (См. табл. 5), что уже нельзя так просто и одпо-значно определить, в какой стране зародилась та или иная технология. Когда-то всем было ясно, что родина реактивного пассажирского самолета и ядерной энергетики - Великобритания, нейлона и транзисторов - Соединенные Штаты. А теперь невозможно сказать, где впервые начали разрабатываться сверхбольшие интегральные схемы, световоды и думающие роботы.  

Уместно папомнить Япония следует девизу Лучшее изделие по наименьшей цене даже при коммерческом освоении наиболее сложных передовых технологий идя по этому пути, она рассчитывает добиться всемирного распространения своих изделий и методов организации производства . Лауреаты Нобелевской премии , открывшие новые фундаментальные принципы , - не единственно важная когорта исследователей на всем свете. Бесчисленные инженеры, вкладывающие свои силы в улучшение изобретаемых технологий, также вправе рассчитывать на уважение. К сожалению, трудно выделить результаты работы каждого отдельного исследователя в прикладных областях, и поэтому многие их достижения часто остаются неотмеченными.  

Со своей стороны Занадная Европа болезненно переживает отставание в электронике - ключевой сфере прогресса современной промышленности1. Создается впечатление, что жестокая безработица встряхнет, наконец, европейские страны и заставит их сконцентрировать внимание на ускоренном развитии индустриальных отраслей. Однако они плохо подготовлены к такому повороту дела сталкиваясь со значительными трудностями в НИОКР по электропике и другим передовым технологиям, компании Западной Европы все более и более зависят от помощи Японии.  

Итак, для новых индустриальных и развивающихся стран тормозом на пути к овладению самыми передовыми технологиями и достижению наивысшей конкурентоспо-  

Как показывают конкретные данные о состоянии технологий будущего, их развитие идет главным образом в рамках государственных проектов с участием научно-исследовательских групп, организованных частными фирмами . Ведущее место в системе этих проектов занимают Проект НИОКР для базовых технологий в отраслях следующего поколения, руководимый МВТП, и Система исследовательских работ для развития передовых технологий, созданная Управлением науки и техники.  

Японская экономика ежегодно нуждается в притоке 00 тыс. работников. Их пока еще не могут заменить 20 тыс. роботов, которые каждый год закупаются промышленниками. Считается, что по крайней мере в ближайшее десятилетие внедрение роботов не сможет серьезно повлиять на масштабы занятости, даже если оно существенно расширится. К тому же имеются основания полагать, что роботизация спровоцирует рост некоторых отраслей промышленности и обусловит появление новых специальностей, а это увеличит общие масштабы спроса на рынке рабочей силы , особенно спрос на высокообразованный персонал, в котором столь остро нуждается вся сфера передовой технологии. Может быть, и эти оценки способствуют довольно спокойному отношению рядовых работников к роботному половодью.  

Новым направлением на стыке научно-технологической и промышленной политики становится развитие передовых производственных технологий. Лидерами в разработке новых мер и подходов выступают США, некоторые страны ЕС и Китай. В России обсуждение вопросов «новой индустриализации» только начинается. Проблемы есть во всех сопряженных сферах - науки, разработки технологий, а также государственного регулирования. Вместе с тем в научно-технологической сфере в стране накоплен опыт, который, после корректировки, может быть использован для встраивания России в новые технологические ниши.

Направления развития передовых производственных технологий, иногда их также называют «подрывными» или «прорывными», подчеркивая то, что они не совершенствуют, а принципиально меняют структуру производства стали активно обсуждаться в развитых и новых индустриальных странах. Внимание к ним неслучайно: передовые производственные технологии создают новые рынки и целые отрасли, способствуют росту производительности труда, повышению конкурентоспособности.

Более того, нередко их связывают с зарождением следующего экономического уклада: они ведут к сворачиванию массовых производств, индивидуализации товаров, снижению зависимости от дешевых трудовых ресурсов, а развивающиеся цифровые технологии обеспечивают связанность производственных процессов. С технической точки зрения новые производственные технологии ассоциируются в первую очередь с 3D-печатью, интернетом вещей, новыми материалами, робототехникой. Новые производственные технологии определяются скорее как сумма компетенций, нежели через перечень критических технологий. Именно поэтому они регулируются не только мерами промышленной, но и инновационной, научной и образовательной политики.

Тесно связанным с понятием передовых производственных технологий является локализация - то есть размещение новых производств рядом с центрами разработки и дизайна, приближение научных и проектных подразделений к производству. Это особенно характерно для США, где в последнее 10-летие страна потеряла треть промышленного производства из-за переноса его в другие страны. Это стало рассматриваться, в том числе, как угроза национальной безопасности, и потому была поставлена задача локализации. Одновременно акцент был сделан на создании новых институтов - региональных «хабов», занимающихся разработками и прототипированием, и увязывание их в сеть.

Для стран, правительства которых активно включились в процесс разработки мер поддержки новых производственных технологий, причины внимания к ним различны. Так, Германия считает себя глобальным лидером в области производства промышленного оборудования и потому стимул к развитию - растущая конкуренция с США, Индией и Китаем. Соответственно, фокус поддержки - не на создании новых структур, а совершенствование процессов - стандартизации, организации работы, проведения тренингов и нормативно-правового регулирования.

В то же время для Китая проблемой становится растущая стоимость трудовых ресурсов, поэтому развитие передовых производственных технологий рассматривается как одно из средств решения данной задачи. Соответственно, акцент в политике сделан на технологиях, снижающих зависимость от трудовых ресурсов. Несмотря на разность мотиваций, новые производственные технологии - это определенным образом очерченные области исследований и разработок, определенные с той или иной степенью детализации. Так, в США изначально экспертами были определены 11 ключевых областей, которые в дальнейшем были детализированы до 135 технологий, определенных на основе краудсорсинга, к участию в котором были приглашены только представители частного сектора.

В стратегических документах стран-лидеров по развитию передовых производственных технологий Россия рассматривается только как растущий рынок для новой продукции. Действительно, начиная с 2010 г. Россия расширяет закупки производственного оборудования, и планируется, что она останется одним из основных импортеров. Вместе с тем в России может быть найдена собственная ниша для развития. Основание для таких предположений - имеющиеся заделы в области математического моделирования, разработки новых материалов. Ряд экспертов называют потенциально выигрышными биомедицинское направление и сферу IT. Согласно оптимистичному прогнозу ЦМАКП, по основным направлениям развития передовых производственных технологий, кроме гибких производственных линий - отставание от мировых трендов на десятилетие и роботов-андроидов - Россия не представлена на технологической карте до 2030 г., горизонт развития в России совпадает с мировым.

Однако хотя бы примерного согласованного перечня приоритетов в этой сфере в России нет, не говоря уже о краудсорсинге промышленных компаний, хотя интерес правительства к этому направлению растет. Пока передовые производственные технологии рассматриваются в узких рамках промышленной политики либо точечных мер. Так, в настоящее время гипертрофированное внимание стало уделяться развитию инжиниринга, однако с акцентом на создание таких центров при вузах. Это, по крайней мере, недостаточно, поскольку в вузах нет необходимых компетенций для того, чтобы организовать у себя центры полного цикла производства, от инжиниринга до продвижения готовых продуктов. Вне обсуждаемого контекста находятся и инструменты, связанные со стимулированием связей науки и ее практических приложений.

Между тем за рубежом регулирование развития новых производственных технологий рассматривается в значительной мере в рамках научной и инновационной политики. Отсюда - и те меры поддержки, которые выбирают государства. В качестве основных направлений изменений можно отметить следующие:

Технологические приоритеты превращаются в ориентир, не предполагая жесткого финансирования именно по выделенным темам. Они определяются не только на основе специально организованной экспертизы или прогнозных исследований, но и краудсорсинга. Такие приоритеты предназначены скорее для последующего мониторинга развития, а не для структурирования по ним программ или центров.

Одной из наиболее распространенных форм поддержки развития новых производственных технологий становятся консорциумы. В их состав входят компании, университеты, региональные органы власти, сервисные и консалтинговые организации. Финансирование обеспечивается, в том числе, из федерального бюджета, однако лидирующая роль принадлежит промышленности. Именно компании предоставляют софинансирование, которое составляет, как правило, более половины суммарного бюджета консорциумов.

Следует также отметить такие особенности консорциумов, как: Фокус на прототипирование и расширение производства. Сетевой тип взаимодействия. Обязательное партнерство с научными и образовательными учреждениями. Бессрочный характер деятельности: предполагается, что после прекращения бюджетного финансирования консорциумы продолжат работу.

В качестве примеров можно привести создаваемые в США Институты в рамках Национальной сети производственных инноваций, «Заводы будущего», финансируемые ЕС на основе государственно-частного партнерства, а также «Центры катапультирования» в Великобритании. В ходе реализации инициатив проводится диагностический мониторинг или диагностический контроль. Его основная цель - выявление проблем и выработка решений для их корректировки, а не оценка достижения заранее сформулированных целей.

В России также накоплен определенный опыт реализации инициатив, которые могут способствовать формированию консорциумов в области передовых производственных технологий. Первый опыт - в 2002 г. была инициирована программа мегапроектов - важнейших инновационных проектов государственного значения. Это крупные проекты, выполнявшиеся коллективами, объединяющими представителей науки и промышленности. Проекты должны были решать ключевые проблемы конкурентоспособности, в том числе снижения издержек производства за счет ресурсосбережения. Мегапроекты отбирались в значительной мере на основе консенсуса представителей науки и бизнеса, их внебюджетное финансирование должно было составлять 60%. Системной оценки итогов их работы нет, однако по формальным показателям мегапроекты были признаны бюджетно эффективными. Данный опыт, в том числе в части мониторинга проектов, может быть пересмотрен с точки зрения возможности его использования для развития передовых производственных технологий.

Второй потенциальный инструмент - технологические платформы. Через них возможна мобилизация компаний для определения критических областей, необходимых для развития передовых производственных технологий. Кроме того, как показывает опыт Европейских технологических платформ, из них могут вырастать консорциумы при лидирующей роли крупных компаний.

В то же время пока проблемные аспекты доминируют, причем как в сфере науки, так и инноваций. Во-первых, согласно обзору компании Thomson Reuters, обнародованному в 2013 г., Россия не входит в группы лидеров ни по одному из ста наиболее перспективных научно-технологических направлений. Во-вторых, в мире происходит переход к трансдисциплинарным исследованиям, которые лежат в основе развития многих передовых технологий, а в России еще только обсуждают важность междисциплинарности.

Принципы бюджетной поддержки разработки технологий также требуют серьезной коррекции: пока практикуется финансирование выпуска новых образцов, а не системного обновления технологий. Кроме того, проводимая в настоящее время политика «принуждения к инновациям» в отсутствии на них экономического спроса также играет скорее отрицательную роль. Поэтому определяя стратегию и меры развития передовых производственных технологий, важно учитывать имеющиеся ограничения, включая кадровую ситуацию в российской науке.

Дорогие друзья!

Экономическая мощь любой страны определяется сегодня уже не столько объемом производимых товаров и услуг, сколько созданием принципиально новых продуктов и технологий.

Основной тренд происходящих на наших глазах изменений заключается в том, что промышленное производство становится цифровым, «безбумажным», интеллектуальным и кастомизированным.

Заводы и предприятия будущего будут существенно отличаться от тех, к которым мы привыкли. И эти изменения, которые приходят вместе с укладом, мы уже можем наблюдать.

Я предлагаю сегодня поговорить о том, какие именно передовые производственные технологии меняют облик мировой промышленности, и как эта «новая индустриализация» проводится в России.

Передовые производственные технологии часто называют «прорывными», подчеркивая тот факт, что они не просто совершенствуют, а принципиальным образом меняют структуру производства. Главная цель их внедрения – производить продукцию качественнее, быстрее и при этом дешевле.

Под передовыми технологиями мы имеем в виду комплекс технологических процессов, включающих различные машины, приборы, оборудование, которые управляются в той или иной мере с помощью компьютера.

Практически все эти технологии объединяет то, что они «оцифровывают» традиционную промышленность, а их ядром является.

Почему новым производственным технологиям уделяется сегодня такое большое внимание? Если традиционные рынки показывают ежегодный рост на 5-7%, то такие высокотехнологичные направления, как промышленный интернет или аддитивное производство, – от 30% и выше.

Приведу всего лишь несколько наглядных цифр, демонстрирующих бурный рост новых рынков, связанных с передовыми производственными технологиями.

По оценкам экспертов, мировой рынок промышленной автоматизации уже в 2019 году может составить почти 150 млрд долларов, а рынок «больших данных» может достичь через два года 187 млрд долларов.

Индустрия аддитивного производства должна вырасти с нынешних 6 млрд до 30 млрд долларов к 2022 году, а объем рынка всех «цифровых», «умных» и «виртуальных» фабрик превысит к 2035 году 1,5 трлн долларов. Это, конечно, прогнозные значения, но они отчетливо показывают то, как «завтра» будет выглядеть мировая промышленность.

Очень быстрыми темпами растет сегодня рынок новых материалов, в первую очередь благодаря спросу на них со стороны крупных отраслей промышленности. Без углепластиков уже сложно представить себе авиакосмическую сферу, или строительство крупных сооружений и мостов.

Фотополимеры, металлические сплавы, порошковые и волоконные материалы все чаще заменяют традиционные металл или дерево. Главное преимущество композитов – это снижение веса конструкции, что приводит к существенному сокращению издержек.

Например, уменьшение массы искусственного спутника на околоземной орбите всего на 1 килограмм приводит к экономии 1 тысячи долларов. Снижение веса самолета на тот же 1 килограмм – сокращает издержки уже до 30 тысяч долларов ежегодно в течение всего срока эксплуатации воздушного судна.

Практически ежегодно появляются новые «умные» материалы, обладающие памятью возврата к своей исходной форме, способностью самовосстанавливаться и даже самоочищаться. Их активное внедрение также серьезно меняет саму экономику промышленного производства.

Многие из вас наверняка слышали о том, что в этом году прошли первые летные испытания нового флагмана российской гражданской авиации – самолета МС-21. Это проект, в котором воплощены самые передовые на сегодня инженерные и научные решения.

Одной из главных особенностей МС-21 является крыло из полимерных композиционных материалов, впервые в мире созданное для узкофюзеляжных самолетов. Доля композитных материалов в конструкции лайнера доходит до 35%, что делает его уникальным в своем классе. За счет применения передовых технологий и материалов МС-21 обладает высокими аэродинамическими качествами, потребляет меньше топлива и требует меньших затрат в ходе эксплуатации по сравнению со своими сегодняшними главными конкурентами – 737 и Airbus A320.

Благодаря своей легкости и прочности композиционные материалы широко применяются в , судостроении и атомной промышленности. Способность композитов выдерживать значительные нагрузки делает эффективным их применение при изготовлении, например, лопастей ветрогенераторов.

Одним из самых перспективных направлений является промышленная 3D-печать, или аддитивные технологии, которые меняют традиционно сложившиеся подходы к обработке материала.

На протяжении многих столетий технология оставалась, по большому счету, неизменной: человек резал металл, фрезеровал, обтачивал его. Иначе говоря, удалял всё лишнее, чтобы получить нужную деталь. Аддитивное производство, наоборот, построено на добавлении материала – металлического порошка, расплава или проволоки, что подчеркивается и в самом названии этих технологий.

3D-принтинг можно назвать одним из главных открытий последних десятилетий. Данная технология позволяет создавать методом послойной печати изделия различной формы и сложности на базе цифрового макета. Это совершенно новая концепция проектирования, значительно сокращающая временной отрезок между появлением в голове инженера идеи и ее материализации в конечный продукт.

Аддитивные технологии позволяют внести еще на стадии проектирования необходимые правки и корректировки, поменять объем выпускаемой партии в зависимости от спроса, сделать каждое изделие уникальным, адаптированным под конкретного потребителя, то есть производить кастомизированную продукцию.

Более того, уже началась разработка технологий 4D-печати. Речь идет о создании дополнительного измерения, позволяющего объекту меняться во времени. Если эти идеи удастся воплотить в жизнь, то появится новое поколение самоизменяющихся продуктов, способных реагировать на изменения окружающей среды.

Справочно. Под 4D-печатью имеется в виду добавление к трем измерениям для создания реальных объектов (длине, широте и высоте) четвертого параметра – фактора времени. Материалы приобретают способность адаптироваться к изменениям окружающей среды, но при этом обладают «памятью формы», что позволяет им возвращаться в исходное состояние. Пример: одежда или обувь меняют свою форму и функционал в зависимости от погодных условий – жары, ветра.

Уже сегодня аддитивные технологии получают всё более широкое распространение в машиностроении, аэрокосмической промышленности, двигателестроении, металлургии, биомедицине.

Например, наша Объединенная двигателестроительная корпорация планирует применять аддитивные технологии при производстве газотурбинных двигателей. До 20% деталей в массе двигателей, как ожидается, будут изготавливаться с помощью 3D-печати. И уже были с успехом внедрены при изготовлении деталей двигателя ПД-14 для гражданской авиации, а также в конструкции нового газотурбинного двигателя морского применения.

Аддитивным способом планируют печатать отдельные компоненты и «Вертолеты России» – в первую очередь несиловые детали и элементы рулевого управления.

С помощью аддитивных технологий люди уже пробуют возводить жилые дома и офисы, создают первые прототипы «пластикового» огнестрельного оружия. Печатаются протезы для кистей рук и нижних конечностей, разрабатываются специальные биочернила для печати костных тканей и хрящей.

Разработкой 3D-принтеров в нашей стране занимается целый ряд исследовательских центров – Московский центр лазерных технологий МГТУ имени Баумана, Санкт-Петербургский «Политех», Томский политехнический университет и другие. На базе НПО «Сатурн» в Рыбинске центр аддитивных технологий создает «Ростех».

Очень сильные позиции в сфере трехмерной печати у предприятий «Росатома». Например, первый российский 3D-принтер металлической печати был сделан в «ЦНИИТмаше» (Центральный научно-исследовательский институт технологии машиностроения, г. Москва). На выходе получаются сложнопрофильные изделия, которые на 10-15% прочнее тех, что изготавливаются традиционным литьём.

Аддитивные технологии – настоящий образец «новой» промышленности, переживающей цифровую трансформацию. Данные, необходимые для запуска производства и создания изделий, теперь могут храниться в цифровом виде, буквально на «флешке», что существенно экономит издержки предприятия.

Пожалуй, самым важным этапом производства промышленной продукции является процесс перехода от идеи ее создания к реальному воплощению в жизнь.

Как выглядит традиционная цепочка разработки нового продукта? Конструкторы проектируют, инженер-расчетчик делает расчетные проверки, затем проводится большое количество натурных испытаний. В итоге на всех этапах жизненного цикла вносится множество изменений, каждое из которых приводит к росту себестоимости и сроков.

Цифровизация промышленности меняет эту систему – проектирование ведется уже на базе проведенных сложных математических расчетов. Иными словами, конструктор начинает работать не с чистого белого листа, а с конкретной цифровой моделью.

Высокотехнологичные компании в аэрокосмической сфере, автомобилестроении или нефтегазовом машиностроении создают «цифровых двойников», то есть точную виртуальную копию объекта. Для чего это делается? Чтобы заранее выявить любые ошибки в конструкции, оптимальным образом задействовать все имеющиеся ресурсы, улучшить совместную работу конструкторов и технологов.

По такому принципу создается, к примеру, отечественный цифровой подводно-добычной комплекс для разработки шельфовых месторождений в Арктике.

Цифровое проектирование ускоряет подготовку производства, сокращает издержки и устраняет возможные риски на самых первых этапах разработки продукта. Эти принципы успешно применялись, например, в проекте «Кортеж» по созданию линейки отечественных автомобилей на единой модульной платформе. Всего лишь за два года были изготовлены прототипы машин в четырех вариантах кузовов. Столь коротких сроков удалось достичь за счет использования самых передовых технологий проектирования.

Но любой завод начинает кардинальным образом меняться, когда внедряется автоматизация. В среднем автоматика быстрее человека в 3-4 раза. Там, где раньше применялся рутинный ручной труд, работу выполняет робот-автомат, который не ошибается, не устает и действует по заранее установленной программе.

В этом и заключается главный положительный эффект от роботизации за счет повышения скорости и эффективности работы и снижения риска ошибок, вызванных человеческим фактором. Причем особую ценность промышленные роботы представляют на тех участках, которые связаны с тяжелыми или опасными для человека условиями работы.

Массовое внедрение роботизированных технологий является главным фактором перехода к безлюдной промышленности. И эти перемены ощущают на себе даже самые консервативные отрасли.

Например, новосибирская группа компаний «Обувь России» создает фабрику, где все основные операции – от раскроя до окончательной сборки обуви – выполняют промышленные роботы. Одна «умная» машина способна заменить десяток швей, а производительность труда «интеллектуального» станка в 6-8 раз выше обычной .

Более того, роботы уже обучают конструкторов, технологов и дизайнеров. Машина, получившая флешку с будущей моделью обуви, всего за несколько секунд успевает отсканировать информацию, перенести ее на фрезерный станок, который быстро вырезает из кожи заготовку, а затем сам сшивает детали.

«Умными», впрочем, могут быть не только компьютеры, роботы и материалы, но и целые предприятия. Когда к единой сети подключаются и начинают взаимодействовать между собой различные единицы , датчики, сенсоры и прочие небытовые устройства, значит мы говорим о промышленном, или индустриальном, «интернете вещей».

Самый важный эффект от внедрения таких сетей – это практически полное исключение человека из части производственных процессов и операций. Наряду с робототехникой, именно индустриальный интернет является главным драйвером перехода к безлюдной промышленности.

Вся поступающая информация с большого количества датчиков и оборудования объединяется в единую сеть. Человеку остается только осуществлять мониторинг этих данных, анализировать их и вносить при необходимости определенные коррективы.

«Интернет вещей» – это, пожалуй, самое яркое проявление симбиоза физических объектов и цифровых технологий. По разным оценкам, количество подключенных устройств увеличится с 6 млрд в 2015 году до 25-50 млрд к 2025 году. Так же, как «умный» холодильник может сообщить об истечении срока годности продуктов, так и промышленное оборудование само «расскажет» инженеру о состоянии своей работы и передаст все необходимые данные по сети.

Экономический эффект от объединения производственных систем в единую сеть ожидается колоссальный. К примеру, эксперты международной консалтинговой компании «Аксенчер» оценивают общий вклад промышленного интернета в мировую экономику к 2030 году
в 14,2 трлн долларов.

Эта сумма складывается из экономии на издержках за счет оптимизации производства, цифровизации всех технологических и бизнес-процессов, перехода на сервисную модель использования традиционной продукции, повышения производительности и безопасности труда.

Отдельное место в списке прорывных производственных технологий занимают
«большие данные». Они используются для достижения максимальной продуктивности и эффективности промышленности на основе анализа огромного массива собранной информации. Аналитика «big data» позволяет в отдельных случаях снижать издержки предприятий на 5-10%.

Компания General Electric применяет «большие данные» с целью минимизации времени простоев производства. Apple – для улучшения дизайна и удобства использования своих продуктов, а корпорация Intel снижает себестоимость за счет сокращения числа проверок и тестов перед выводом на рынок новых микропроцессоров.

В России технологии «big data» активно используются в банковской и телекоммуникационной сфере. Например, Сбербанк анализирует с помощью них данные, касающиеся 135 млн частных и более 1,5 млн корпоративных клиентов. Ростелеком благодаря новым аналитическим инструментам обрабатывает 20 млн документов в сутки, с минимальным участием человека в этом процессе. Сотовый оператор МТС использует «большие данные» при выборе формата и места размещения новых салонов связи, а также для оптимизации рабочего дня сотрудников.

Навыки обращения с огромными массивами данных необходимо прививать уже со школьной скамьи. Так, в московском лицее при ядерном университете «МИФИ» (№ 000) установлен суперкомпьютер производительностью 18 терафлопс, то есть 18 триллионов операций в секунду. Он объединен в единую сеть суперкомпьютеров России и подключен к сети обмена данных экспериментальных установок мира. Таких, как CERN («ЦЕРН», Европейская организация по ядерным исследованиям).

Технологии «больших данных» очень эффективны и в промышленности. В частности, в нефтегазовой отрасли они помогают выбрать наиболее оптимальные способы извлечения недр, позволяют отслеживать процессы бурения и анализировать качество сырья.

К примеру, компания «Газпром нефть» решила, благодаря «большим данным», проблему сбоя автоматического перезапуска насосов после аварийного отключения электропитания. Справиться с этой задачей традиционными аналитическими инструментами было бы невозможно.

В этом году «Газпром нефть» начала сотрудничать со специальным подразделением компании «Яндекс» – Yandex Data Factory. Применение технологий машинного обучения и искусственного интеллекта поможет нефтяникам оптимизировать процессы бурения и освоения скважин.

Успешный опыт совместной работы с Yandex Data Factory уже имеет Магнитогорский металлургический комбинат. После каждой плавки сохраняются статистические данные – о химических замерах, массе лома и чугуна, расходе ферросплавов.

Полученная информация накапливается, и, исходя из нее, можно сделать вывод о том, как эффективнее осуществлять данный процесс. Это позволяет при заданном качестве уменьшить затраты и максимально оптимизировать процесс плавки.

Таким образом, технологии «больших данных» – это набор решений, позволяющих оптимизировать производство. А опыт взаимодействия «Яндекса» и металлургов подчеркивает, насколько современная промышленность тесно связана с IT-индустрией.

Показательным примером стала прошедшая минувшим летом в Екатеринбурге международная промышленная выставка «Иннопром». В этом году было особенно заметно, насколько существенно выросла доля представителей IT-индустрии в общем составе участников выставки.

Если все эти передовые технологии собрать на одной производственной площадке, мы получим завод нового поколения. На такой «фабрике будущего» можно будет выпускать современную, кастомизированную продукцию в разы быстрее и дешевле, чем на традиционных производствах.

«Фабрики будущего» можно условно разделить на три основные этапа формирования. На первом этапе, при переводе всех основных производственных процессов в «цифру», появляется «цифровая фабрика». На следующем, более сложном этапе, появятся «умные фабрики», где технологический процесс будет проходить с минимальным вмешательством человека.

И, наконец, в результате объединения цифровых и умных предприятий в единую сеть создается «виртуальная фабрика». Учитывая высочайшую скорость передачи информации, строить такие «заводы будущего» можно будет в любой географической точке.

На первый взгляд, «фабрики будущего» могут показаться чем-то очень далеким, из области научной фантастики. Однако первую «умную фабрику» в России уже до конца этого года планирует запустить госкорпорация «Ростех» – на базе рыбинского «ОДК-Сатурн».

На предприятии будет создан испытательный полигон для отработки передовых производственных технологий на практике. Эти решения могут применяться в дальнейшем для изготовления, например, сложных деталей нового поколения для авиадвигателей.

На базе передовых производственных технологий в России уже реализуются проекты по созданию мощнейшего в мире атомного ледокола «Арктика», новой линейки автомобилей « Патриот».

«КамАЗ» в этом году впервые представил уникальный беспилотный автобус «Шатл»
это совместный проект в кооперации с НАМИ и «Яндексом». Сейчас проводятся испытания автобусов, а их тестовые образцы будут использоваться уже в следующем году во время чемпионата мира по футболу.

Каждая новая технологическая эпоха несет за собой не только производственные, но и социальные изменения.

Безлюдная промышленность, с одной стороны, высвобождает с предприятий большое количество сотрудников. С другой, возникает потребность в новых специалистах для цифрового производства. Обеспечить работоспособность новых систем сможет только высококвалифицированная рабочая сила.

Все эти изменения будут происходить плавно, эволюционным путем. Современное оборудование, станки – это еще и эволюция сознания работников. Новые технологии и компьютеризация производства привлекают в промышленность молодое поколение, что благотворно сказывается на процессе омоложения кадрового состава предприятий.

К примеру, еще в 2013 году средний возраст сотрудников концерна «Калашников» составлял 47 лет, а сегодня этот показатель – 35-36 лет. Причем спрос на рабочие профессии растет по всей стране в целом. В этом году к обучению по программам среднего профобразования приступят 976 тысяч учащихся, что на 66 тысяч больше,
чем по итогам 2016-го.

Любая передовая технология по отдельности не несет за собой «революцию», но все вместе, в комплексе, они меняют саму идеологию промышленного производства. Например, исчезает потребность строить крупные заводы конвейерного типа, производящие огромное количество деталей.

«Фабрика будущего» – это, скорее, инжиниринговый центр с компактным цифровым оборудованием, аддитивными машинами и большим количеством компьютеров, где оперативно создаются изделия нужной формы с требуемыми характеристиками. Меняются и подходы к логистике. «Умные фабрики» смогут обмениваться друг с другом информацией, независимо от своего местонахождения.

Еще совсем недавно искусственный интеллект, беспилотные автомобили, роботы и «умные фабрики» фигурировали только в фантастических фильмах и книгах. Сегодня – это наша реальность. По разным прогнозам, доля автоматизации процессов в производстве и логистике достигнет к 2035 году 90-95%, а по дорогам мира будут перемещаться более 20 млн беспилотных автомобилей.

Важную роль в популяризации рабочих профессий играет движение World Skills. Только в этом году свыше 15 тысяч российских выпускников сдали демонстрационный экзамен в соответствии со стандартами World Skills по 74 компетенциям – от мобильной робототехники до многоосевой обработки на станках с ЧПУ. По результатам экзаменов выдаются «Skills-паспорта» (паспорта компетенций), которые признаются такими работодателями, как госкорпорация Росатом, ОАК, группа «СТАН», ЧТПЗ и другими.

Эра цифровых технологий предоставляет больше возможностей для личностного и карьерного роста. Среди экспертов бытует даже мнение о том, что более половины представителей вашего поколения займут должности, которые сейчас еще просто не существуют.

Вполне вероятно, что востребованной профессией станет аналитик данных «интернета-вещей», проектировщик «умного дома» или, например, биофармаколог.

С появлением новых профессий неизбежно будут исчезать старые. В первую очередь те специальности, которые окажутся ненужными из-за развития искусственного интеллекта, беспилотного транспорта и робототехники. Но этот процесс может пройти без каких-либо социальных волнений. Например, в Сбербанке когда-то работало 33 тысячи бухгалтеров, а сегодня их 1,5 тысячи, и никакой глобальной катастрофы при этом не случилось.

Дальнейшее развитие технологий во многом зависит от вас самих. Ваше поколение выросло в «компьютерную» эпоху, поэтому вы уже хорошо адаптированы к цифровым технологиям и способны легко воспринимать и усваивать всё новое.

Новая промышленная революция открывает для вас новые, захватывающие возможности. Не упустите их, ребята!

Спасибо за внимание!

Источник: elite-supernova.ru

Анализ
×
Лариса Валерьевна Катышева
Последняя должность: Директор Центра современных коммуникаций Высшей школы государственного управления (РОССИЙСКАЯ АКАДЕМИЯ НАРОДНОГО ХОЗЯЙСТВА И ГОСУДАРСТВЕННОЙ СЛУЖБЫ ПРИ ПРЕЗИДЕНТЕ РОССИЙСКОЙ ФЕДЕРАЦИИ, АКАДЕМИЯ ПРИ ПРЕЗИДЕНТЕ РОССИЙСКОЙ ФЕДЕРАЦИИ, РАНХИГС, ФГБОУ ВО "РОССИЙСКАЯ АКАДЕМИЯ НАРОДНОГО ХОЗЯЙСТВА И ГОСУДАРСТВЕННОЙ СЛУЖБЫ ПРИ ПРЕЗИДЕНТЕ РОССИЙСКОЙ ФЕДЕРАЦИИ")
Чарльз Халл
Последняя должность: Исполнительный вице-президент (3D Systems Corporation)
Джим Корр
Последняя должность: Политик
Фертман Александр
Фертман А.
Apple
Сфера деятельности:Связь и ИТ
348
ПАО СБЕРБАНК
Сфера деятельности:Страхование
727
ООО "ЯНДЕКС"
Сфера деятельности:Связь и ИТ
464
ПАО "РОСТЕЛЕКОМ"
Сфера деятельности:Операции с недвижимым имуществом, аренда и прочие услуги
344